
 1

Empirical Studies of Quality Models in Object-Oriented Systems1 

 

Lionel C. Briand 

Software Quality Engineering Lab. 
Systems and Computer Engineering 

Carleton University 
1125 Colonel By Drive 

Ottawa, K1S 5B6 Canada 

Jürgen Wüst 

Fraunhofer IESE 
Sauerwiesen 6 

67661 Kaiserslautern 
Germany 

Abstract 

Measuring structural design properties of a software system, such as coupling, cohesion, or complexity, is a 
promising approach towards early quality assessments. To use such measurement effectively, quality models 
are needed that quantitatively describe how these internal structural properties relate to relevant external system 
qualities such as reliability or maintainability. This chapter has for objective to summarize, in a structured and 
detailed fashion, the empirical results that have been reported so far with modeling external system quality 
based on structural design properties in object-oriented systems. We perform a critical review of existing work in 
order to identify lessons learned regarding the way these studies are performed and reported. Constructive 
guidelines are also provided to facilitate the work of future studies, thus facilitating the development of an 
empirical body of knowledge.  

Table of Contents 

1 Introduction..................................................................................................................................................... 2 
2 Overview of Existing Studies .......................................................................................................................... 2 

2.1 Classification of studies........................................................................................................................... 2 
2.2 Measurement .......................................................................................................................................... 3 
2.3 Survey of Studies .................................................................................................................................... 4 
2.4 Discussion............................................................................................................................................... 8 

3 Data Analysis Methodology ............................................................................................................................ 9 
3.1 Descriptive statistics.............................................................................................................................. 10 
3.2 Principal component analysis................................................................................................................ 10 
3.3 Univariate Regression analysis ............................................................................................................. 11 
3.4 Prediction Model Construction .............................................................................................................. 12 
3.5 Prediction model evaluation .................................................................................................................. 18 

4 Summary of Results ..................................................................................................................................... 21 
4.1 Correlational Studies ............................................................................................................................. 21 
4.2 Controlled Experiments......................................................................................................................... 33 

5 Conclusions.................................................................................................................................................. 34 
5.1 Interrelationship between design measures.......................................................................................... 34 
5.2 Indicators of fault-proneness................................................................................................................. 35 
5.3 Indicators of effort ................................................................................................................................. 35 
5.4 Predictive power of models ................................................................................................................... 35 
5.5 Cross-system application ...................................................................................................................... 35 
5.6 Cost benefit model ................................................................................................................................ 36 
5.7 Novel/advanced data analysis techniques ............................................................................................ 36 
5.8 Exploitation of results ............................................................................................................................ 36 
5.9 Future research directions .................................................................................................................... 37 

6 Appendix....................................................................................................................................................... 38 
7 Glossary ....................................................................................................................................................... 42 
8 References ................................................................................................................................................... 43 

 

 

                                                      
1 To be published in Advances in Computers, Academic Press, edited by Marvin Zelkowitz 



 2

1 Introduction 

As object-oriented programming languages and development methodologies moved forward, a significant 
research effort was also dedicated to defining specific quality measures and building quality models based on 
those measures. Quality measures of object-oriented code or design artifacts usually involve analyzing the 
structure of these artifacts with respect to the interdependencies of classes and components as well as their 
internal elements (e.g., inner classes, data members, methods). The underlying assumption is that such 
measures can be used as objective measures to predict various external quality aspects of the code or design 
artifacts, e.g., maintainability, reliability. Such prediction models can then be used to help decision-making during 
development. For example, we may want to predict the fault-proneness of components in order to focus 
validation and verification effort, thus finding more defects for the same amount of effort. Furthermore, as 
predictive measures of fault-proneness, we may want to consider the coupling, or level of dependency, between 
classes.  

A large number of quality measures have been defined in the literature. Most of them are based on plausible 
assumptions but one key question is to determine whether they are actually useful, significant indicators of any 
relevant, external quality attribute. We also need to investigate how they can be applied in practice, whether they 
lead to cost-effective models in a specific application context. Though numerous empirical studies have been 
performed and reported in order to address the abovementioned questions, it is difficult to synthesize the current 
body of knowledge and identify future research directions. One of the main reasons is the large variety of 
measures investigated and the lack of consistency and rigor in the reporting of results.  

This chapter has for objective to summarize, in a structured and detailed fashion, the results that have been 
reported so far. Overall, though not all the results are easy to interpret, there is enough consistency across 
studies to identify a number of strong conclusions. We also perform a critical review of existing work in order to 
identify lessons learned regarding the way these studies are performed and reported. Constructive guidelines 
are also provided to facilitate the work of future studies, thus facilitating the development of an empirical body of 
knowledge.  

Section 2 summarizes existing studies and they main characteristics. Section 3 describes the most important 
principles and techniques regarding the analysis of software quality data and structural measurement. A 
recommended analysis procedure is also provided. Section 4 summarizes, in great detail, the results of the 
studies discussed in Section 2. These results are discussed and conclusions are provided in Section 5. 

2 Overview of Existing Studies 

This section presents a first overview of the existing studies relating OO design measurement and system 
quality, and highlights their commonalities and differences. A comparison of their results is performed in Section 
4.  

2.1 Classification of studies 

Despite a large number of papers regarding the quality measurement of object-oriented systems, the number of 
articles that empirically investigate the relationship between design properties and various external quality 
attributes is relatively small. These studies fall into two categories: 

1.  Correlational Studies. These are studies which by means of univariate or multivariate regression analysis try to 
demonstrate a statistical relationship between one or more measures of systems´ structural properties (as 
independent variables) and an external system quality (as dependent variable). 

2.  Controlled experiments. These are studies that control for the structural properties of a set of systems 
(independent variables, mostly related to the use of the OO inheritance mechanism), and measure the 
performance of subjects undertaking software development tasks in order to demonstrate a causal 
relationship between the two. So far such studies have mostly been performed with students and have 
focused on the impact of inheritance on maintenance tasks.  

Correlational studies are by far more numerous as they are usually the only option in industrial settings. Outside 
these two categories, published empirical work typically falls into two further categories: 

3.  Application of a set of design measures to one or more systems; with a discussion of the obtained 
distributions of the measures within one system, or a comparison of distributions across two or more 
systems, e.g., [AGE95], [Bar98], [CK94], [SC93]. For instance, [SC93] develop two versions of a brewery 



 3

control system to identical specifications, one following a data-driven approach [SM88], the other following a 
responsibility-driven approach [WWW90]. They apply the set of design measures by Chidamber and 
Kemerer [CK91] to the two resulting systems. They find the system resulting from the responsibility-driven 
approach to display more desirable structural properties. They conclude the responsibility-driven to be more 
effective for the production of maintainable, extensible and reusable software.  
Conclusions in such studies of course are only supported when a relationship of the design measures used 
with the aforementioned system qualities is established. Considered in isolation, such studies are not suitable 
to demonstrate the usefulness of the structural measures, or draw conclusions from their measurement. 

4.  Apply a set of design measures to one or more systems and investigate relationships between these design 
measures, by investigating pairwise correlations and performing factor analysis (e.g., [AGE95], [CN00], 
[LC94]). 

Besides empirical studies, the literature is concerned with the following topics: 

5.  Definition of new sets of measures (e.g., [BDM97], [BK95], [CK91], [CK94], [Hen96], [HM95], [LH93], [LK94], 
[LLWW95], [Li98]) 

6.  Definition of measurement frameworks for one or more structural properties, which provide guidelines how 
these properties can, in principle, be measured [EKS94], [HM95], [BDW98], [BDW99]. 

7.  Criticism/theoretical analysis of existing measures and measurement frameworks; in particular, there is an 
interest in defining, for measures of various structural properties, necessary mathematical properties these 
measures must possess in order for them to be valid measures of the properties they purport to measure 
[BMB96], [KPF95], [Whi97], [Zus98]. 

Our discussions in this article will focus on categories 1) and 2), with a strong emphasis on the former as these 
studies are by far the most numerous. 

2.2 Measurement 

In this section, we provide some examples of measures for object-oriented designs, to give the reader new to 
the field an impression of what measures of OO structural properties usually are about. We summarize here the 
measures by Chidamber and Kemerer ([CK94], in the following referred to as C&K). As we will see, these are 
the measures having received the widest attention in empirical studies and will be frequently mentioned in the 
subsequent Sections. 

Chidamber and Kemerer define a suite of six measures (CBO, RFC, LCOM, DIT, NOC, WMC), to quantify the 
coupling, cohesion, inheritance relationships, and complexity of a class in an OO system: 

• CBO (Coupling between Objects) - a count of the number of non- inheritance related couples with other 
classes. An object of a class is coupled to another, if methods of one class use methods or attributes of 
the other. 

• RFC (Response for class) - RFC = |RS| where RS is the response set for the class. The response set 

can be expressed as { } { }� iall iRM , where { }iR  is the set of methods called by method i, and {M} is 

the set of all methods in the class. The response set of a class is a set of methods that can potentially be 
executed in response to a message received by an object of that class. 

• LCOM (Lack of Cohesion in Methods) - Consider a Class C1 with methods M1, M2, ..., Mn. Let {Ii} = set of 
instance variables used by method Mi. There are n such sets {I1}, ..., {In}. Let P={(Ii,Ij) | Ii•Ij=Ø} and Q={(Ii,Ij) 
| Ii•Ij•Ø}. If all n sets {I1}, ..., {In} are Ø, then let P=Ø. 
 



 >−

=
otherwise

QPifQP
LCOM

,0

,
 

 

• DIT (depth in inheritance tree) - The depth of a class in the inheritance tree is the maximum length from 
the node to the root of the tree. 

• NOC (Number of children) - the number of classes derived from a given class. 

• WMC (Weighted Method Complexity) - Consider a class C1, with methods M1, M2, ..., Mn. Let c1, c2, ..., cn 
be the complexity of the methods. Then: 
 



 4

∑
=

=
n

i
icWMC

1

 

 
The complexities ci were intentionally left undefined. Two versions of WMC were suggested and are 
frequently used: 

• In [LH93] and [LHKS95], ci is defined as McCabe’s cyclomatic complexity of method Mi [McC76]. 
• In [BBM96], each ci is set to one. In other words, this version of WMC counts the (non-inherited) 

methods of the class. 

The Appendix provides short definitions for all measures mentioned in this chapter. 

2.3 Survey of Studies 

This section is divided into two distinct subsections. The first one presents correlational studies whereas the 
second one focuses on experiments. The studies are summarized in terms of their settings, dependent variable, 
independent variables, and analysis techniques.  

2.3.1 Correlational Studies 

Table 1 provides for each study a brief description of  

• The external system quality of interest that was used as dependent variable of the study. 

• The measures of structural properties used as independent variables of the study. 

• A brief characterization of the system(s) from which the data sets were obtained (language, size, 
application domain). The systems are described once the first time they are reported and are denoted by 
acronyms in the remainder of the table.  

• The types of analyses that were performed. Most importantly, this includes 

• univariate analysis (what modeling technique was used, if any), 
• multivariate analysis (what modeling technique was used, if any), 
• what kind of validation of the multivariate model was performed, if any. 

 

 

Table 1: Overview of correlational studies 

Reference Dependent Variable Independent 
Variable 

Data Set Univariate 
analysis 

Multivariate 
Analysis 

Model Evaluation 

AM96 defect density, fault 
density, rework effort 
(system wide) 

MOOD metrics UMD: 8 C++ 
systems, university 
setting, from 
students, 4 to 15 
KLOC 

Pearson r linear ordinary 
least- squares 
regression (LS) 

R-square  
(R-sq); 

BBM96 fault-proneness 
(faults from 
acceptance testing) 

C&K [CK94]; Code 
Metrics Nesting 
Level, FunctDef, 
FunctCall 

UMD, see [AM96] Logistic 
Regression (LR) 

Logistic 
regression (LR) 

Contingency Table, 
Correctness/ 
Completeness 

BWDP00 fault-proneness 
(acceptance testing) 

~50 measures 
including C&K, C- 
FOOD [BDM97]. 

UMD, see [AM96] LR LR R-sq, Correct 
ness/Completeness, 
10- cross validation 
(CV) 

BWL01 fault-proneness (field 
faults) 

~50 measures 
including C&K, 
CFOOD. 

LALO: C++ sys tem, 
commercial, 40 
KLOC 

LR LR R-sq, Correct 
ness/Completeness, 
10- CV 

BMW01 fault-proneness (field 
faults) 

Suite of 
polymorphism 
measures [BM99], 
C&K, Part of C-
FOOD 

XPOSE: 144 classes, 
commercial 

LR 
 

LR, MARS 
 

R-sq, Correct 
ness/Completeness, 
10- CV, cross-sys 
tem validation, cost-
benefit model 

BW01 development effort ~50 measures 
including C&K, C- 
FOOD. 

LIOO, university 
setting, public 
domain, 103 classes, 
17 KLOC 

negative binomial 
regression 

Poisson 
Regression, 
Hybrid with 
regression trees 

10-CV, ARE, MRE 

BEDL99 expert opinion (EO): 
‘perceived 
complexity’ 0- 100% 

CACM (author’s 
own), LCOM (2 
versions - CK94, 
LH93 

C++, 18 classes, 
from GUI pack ages 

Spearman rho   



 5

Reference Dependent Variable Independent 
Variable 

Data Set Univariate 
analysis 

Multivariate 
Analysis 

Model Evaluation 

BEGR00 fault-proneness (from 
field faults) 

C&K, without LCOM see [EBGR01] and 
[EBGR99] 

LR  R-Sq; LL Ratio Test 
to compare models 

BM99 fault-proneness (from 
field faults) 

Suite of 
polymorphism 
measures by 
authors, C&K, Part of 
C-FOOD 

LALO, see [BWL01] LR LR goodness of fit (chi-
square) 

BS96? EO: agreement with 
experts’ preference 
between two design 
alternatives 

CDM, CBO, DAC, 
NCC, NSSR, 
efferent/afferent 
coupling 

8 system specs, 2-3 
design alternatives 
each, 20 designs in 
total 

ad hoc, count 
agreement with 
expert judgment 
(no statistical 
testing) 

  

BS98 ? “maintenance 
data”, number of 
faults (from field);  

CDM, C&K (with out 
LCOM), NCC,NSSR, 
CHNL, NCIM 

C++ System (patient 
care mgmnt), 113 
cls., 82KLOC; file 
transfer facility, 29 
Java cls., 6KLOC; 

Spearman rho   

BWL99 likelihood of ripple 
changes 

CBO, part of C- 
Food, 10 more 
coupling measures 

LALO, see [BWL01] LR ranking-based 
model 

 

CDK98 productivity (Size/ 
effort), rework effort, 
design effort 

C&K, LOC, 
dichotomized 
versions of CBO and 
LCOM 

3 banking IS: 
C++, 15KLOC, 45 
cls. 
Objective C, 3KLOC, 
27cls. 
Design docs, 25 cls. 

 linear LS R-square 

CL93 EO: subjective 
summative scale 
across 9 items 
(understandability., 
maintainability., etc) 

author’s own 
(operation/ attribute 
complexity, coupling, 
cohesion, 
inheritance) 

12 system designs 
developed by 6 
students to 2 
identical specs 

 linear LS  

CS00 #changes due to 
defects from 
integration tests/field 
usage 

DIT, NOC, counts of 
elements in 
Shlaer/Mellor design; 
LOC from code 

telecom RT sub 
system, C++, 32 cls., 
130KLOC 

Spearman rho 
linear LS 

linear LS R-square; 
contingency table 

EBD99 EO: ‘perceived 
complexity’ 0- 100% 

author’s own: AMC, 
CDE (class design 
entropy); 
C&K’s WMC 

C++, 17 classes from 
GUI pack ages 

Spearman rho   

EDW98 EO: ‘perceived class 
cohesion’ 0- 100% 

LCOM (2 versions: 
[CK94, LH93]) 

see BEDL99 LS  R-square 

EBGR01 fault-proneness (from 
field faults) 

C&K; Mthds, 
NMO,SIX, avg. 
#parameters, LOC 

C++, commercial 
telecom frame work, 
174 classes 

LR  R-square 

EBML00 fault-proneness (from 
field faults) 

Stmts, Mthds, Attrs; see [EBGR01], 
[EMM01], plus 
commercial telecom 
app, C++, 85 
classes, 

LR (Threshold 
models) 

  

EBGR99 fault-proneness (from 
field faults) 

C&K, C-Food see EBML00 LR LR R-square, leave-
one-out CV, 
receiver-operator 
curve (ROC) 

EMM01 fault-proneness (from 
field faults) 

part of C-Food, DIT, 
NOC, Attrs 

v0.5 and v0.6 of 
Jwriter (comm. text 
processor), 69 and 
42 Java cls. (no inner 
cls.) 

LR LR R-square, leave-
one-out CV, ROC; 
between-version 
validation (v0.5 fit 
data, v0.6 test data)  

GEMM00 fault-proneness (from 
field faults) 

DIT, NOC, Mthds, 
part of C-Food 

Xpose, 145 Java cls.; LR (model 
including con 
founding 
variables). 

LR R-square; leave-
one-out CV, ROC 
curve, Cost Savings 
Model 

LH93, 
LHKS95 

#lines changed over 
3 years 
(maintenance effort 
surrogate) 

C&K - CBO, MPC, 
DAC, 2xSize (Stmts, 
Mth+Attr) 

2 Ada Systems 
(UIMS, QUES), 
commercial, 39/ 71 
cls. 

 linear LS R-square; between-
system CV 



 6

Reference Dependent Variable Independent 
Variable 

Data Set Univariate 
analysis 

Multivariate 
Analysis 

Model Evaluation 

HC98, 
HCN98 

#faults (from testing), 
fault density, EO: 
Subjective 
complexity 
(understandability) on 
a 1-5 scale 

DIT, NOC, NMO, 
NMI, CBO, NAS 

GNU C++ library 
(197 cls.); 
LEDA lib. (97 cls.); 
3 sets of student 
systems, 113, 172, 
317 cls. resp; syst. in 
[HSDL96] 

Spearman rho   

HN96 EO: Subjective 
complexity [HC98] 

C&K, LOC C++ system, 13 cls., 
500LOC, poss. 
Comm. 

Spearman, 
Kendall, Pear 
son’s r  

  

HSDL96 EO: Subjective 
complexity (HC98); 
#faults in testing, 
#modification 
requests; time to 
modify 

LOC, lib/non-lib 
functions called, 
depth in call graph, 
#function 
declarations 
/definitions 

C++ system, 109 
functions, 2.5KLOC. 
Image processing 
SW developed by 
one person. 

Spearman, 
Kendall, Pear 
son’s r for all 
pairs DVxIV 

  

MHM99 effort (project- wide) DV: Dome System 
Meter (based on a 
special notation for 
business models, 
elements of size, 
export coupling), 
Function Points 

37 IS projects, 1.5-
100 man months, 1-
10 developers, C++, 
Smalltalk, 4GL 

quadratic LS   cross validation 
(fit/test data set of 
24/ 13 projects.), 
compare MREs of 
FPA and System 
Meter 

MT98 effort (project- wide) #classes, Mthds, 
LOC 

7 projects from a 
small SW company; 
C++, 15- 135 cls.; 3-
22 person months 
dev. 

Pearson’s r, 
linear and 
exponential LS 

 R-squared 

NQ98 effort (class level) set of 50 measures, 
mostly size/ 
complexity of class 
methods/ attributes 

3 C++ systems: Case 
Tool, GUI lib, control-
SW; total 524 cls., 
47KLOC 

 linear LS  R-sq., between-
system validation 
using 4th system 
(LIOO) 

RL92 EO: Ranking of 
classes by ‘perceived 
complexity’ 

4 Coupling measures 
(author’s own) 

5 C++ systems, 12-
70 cls., 15- 160KLOC 

Pearson’s r   

TKC99 fault-proneness (from 
system tests and 
maintenance phase) 

C&K without LCOM, 
LOC, author’s own 
(inheritance based 
coupling, memory 
allocation) 

3 C++ sub systems 
from a telecom 
application; 
6 KLOC/20 cls.,  
21 KLOC/45 cls.,  
6 KLOC/27 cls. 

LR, (separate for 
each mea sure, 
system, type of 
fault). LR-R-sq. 

  

WH98 effort for field fault 
fixes; effort for 
functional 
enhancements 

C&K measures; 
various 
interpretations for 
WMC (McCabe, Hal 
stead) 

conferencing system, 
114 C++ cls., 
25KLOC 

linear LS linear LS R-squared 

WK00 #ripple changes a 
class participates in, 
proportion ripple 
changes/ changes in 
a class 

CBO, #public 
methods, #methods 

conferencing system, 
114 C++ cls., 
25KLOC 

Kruskal Wallis, 
Kendall’s tau 

  

 

Without delving into the details of the studies in Table 1, we can draw a number of observations: 

• Choice of dependent variable. The dependent variables investigated are either fault-proneness 
(probability of fault detection) or the number of faults or changes in a class, effort for various 
development activities, or expert opinion/judgment about the psychological complexity of a class. 

• Fault-proneness or the number of defects detected in a class is the most frequently investigated 
dependent variable. Sources of faults are either from unit/system testing or field failures. 
This choice of dependent variable is by far the most common in the literature. One reason is that 
using fault-proneness as a dependent variable is an indirect way of looking at reliability, which is an 
important external quality to consider. Another explanation is that the collection of fault data 
(including the assignment of faults to classes) is less difficult than collecting other data related to 
classes (e.g., effort) and this makes it a convenient choice to investigate the impact of structural 
measures on the cognitive complexity of classes.  

• Less frequently investigated is effort for various activities: either total development effort, rework 
effort/functional enhancements, effort to fix faults. For some studies, effort for individual classes was 
collected, which is, in practice, is a difficult undertaking. Other studies collected system/project wide 



 7

effort, which is easier to account for but leads to other practical problems. If systems become the unit 
of analysis then it becomes difficult to obtain enough data to perform multivariate analysis. 

• Two studies [BWL99], [WH98] used the likelihood or number of ripple effects to other classes when a 
change is performed to a class. The goal was to provide a model to support impact analysis. These 
studies are not described in the remainder of this chapter as they are the only one of their kind and 
more studies are needed to confirm the observed trends.  

• In the absence of hard quality data obtained from development projects, subjective data are 
sometimes used. For instance, the following have been used: expert opinion about the perceived 
complexity or cohesion of a class, preference ranking between design alternatives.  
There are a number of problems associated with the use of subjective measurement. Determining 
what constitute an “expert” is one. Moreover, it is a priori unclear to which degree experts’ judgment 
correlates with any external system quality attribute. Eliciting expert opinion is a difficult undertaking 
and must be carefully planned to provide meaningful results and the procedures used must be 
properly reported. Though this is outside of the scope of this article, some abundant literature exists 
on the subject [MB91]. 
An interesting question that, to our knowledge, has not been investigated in depth to date is whether 
structural measures can perform as well as or better than experts in predicting quality attributes such 
as fault-proneness. 

• Choice of independent variables. Existing measures receive a varying amount of attention in the 
empirical studies. The measures by Chidamber and Kemerer [CK94] were investigated the most. One 
reason is that this was one of the first publications on the measurement of object-oriented systems. The 
relative difficulty of collecting more complex measures through static analyzers may also be an 
explanation. Last the profusion of papers proposing new measures, using a different terminology and 
formalism, has made any selection of meaningful measures a difficult undertaking. Some recently 
published measurement frameworks [BDW98, BDW99] may help choose appropriate measures based 
on their properties. A careful selection of measures, based on a clear rationale, is indispensable to 
maintain the complexity of the data analysis within reasonable limits and lower the chances of finding 
significant relationships by chance [Mil81]. However, in the early stage of investigation, it is common for 
studies to investigate large numbers of alternatives, as they tend to be exploratory. 

• Building prediction models. Only about half of the studies employ some kind of multivariate analysis in 
order to build an accurate prediction model for the dependent variable. The remaining studies only 
investigate the impact of individual measures on system quality, but not their combined impact. 
Depending on the measurement scale of the dependent variable, different regression techniques are 
being used. Furthermore, a number of detailed technical issues regarding the data analysis can be 
observed and are discussed in Section 3. One noticeable pattern is the number of studies that only 
investigate linear relationships between structural measures and the dependent variable of interest. 
Though there is no rationale to support this, data sets are often not large enough to investigate non-
linear relationships or interactions. In addition, because of the lack of supporting theory, it is often 
difficult to know what to search for. Exploratory techniques, such as regression trees or MARS [Fri91], 
have been used in some studies to determine non-linearities and variable interactions, with some degree 
of success [BMW01][BW01]. 

• Evaluating prediction models. From the studies that perform multivariate analysis, only half of these 
studies perform some kind of cross validation [Sto74], where the prediction performance of the 
multivariate prediction model in a relevant application context is investigated. The other studies only 
provide a measure of the goodness of fit of the prediction model (e.g., R-square). As a consequence, 
the potential benefits of using such prediction models are not always clear, especially from a practical 
standpoint. Very few studies attempts to build a model on a system and apply it to another one, within 
one environment. As studies move away from exploration and investigate the practical applications of 
measurement-based models, cross-system predictions will require more attention. One practical 
difficulty is to obtain consistent data from different projects of comparable nature.  

• Data sets. Data sets with fault or effort data at the class level are rare. As a consequence, these data 
sets tend to be repeatedly used for various studies, for example investigating different sets of measures, 
or using different modeling techniques. On the one hand, this allows for better comparison between 
studies but it is also detrimental to building an increased body of knowledge, as replication of individual 
studies in many different contexts rarely take place. Instead, we find a large number of different studies 
using a small number of data sets. 



 8

2.3.2 Experiments  

Table 2 provides an overview of the controlled experiments investigating the relationship between structural 
design properties and system quality in object-oriented systems. For each study, we state the literature source, a 
characterization of the dependent and independent variables investigated, the systems used for the experiment 
and the participants involved. The rightmost column indicates what experimental design was employed and the 
analysis techniques used to test the research hypotheses. For an introduction to experimental designs, see e.g., 
[Spe81]. 

Table 2: Overview of controlled experiments 

Referenc
e 

Dependent variable Independent variables Systems/Subjects Exp. Design/ 
An. Technique 

Bar98 reusability (subjective 
perception of) 

C&K, LOC, Methods, 
Attributes, meaningfulness of 
variable names (subjective 
measure) 

2 systems, 3 and 2 classes, one 
designed to be reusable, the other 
not. 

ad hoc 
comparison 

BBDD97 understandability, 
correctness, completeness, 
modification rate of Impact 
Analysis 

procedural vs. OO design; 
adherence to common 
principles of good design 

2x2 systems (30pages reqs&design); 
13 student subjects, 2 runs 

2x2 fact. Design; 
ANOVA, paired 
t- test 

BBD97 understandability, 
correctness, completeness, 
modification rate of Impact 
Analysis 

adherence to common 
principles of good design 

2x2 systems (30pages reqs&design); 
31 student subjects, 2 runs 

2x2 fact. Design; 
ANOVA, paired 
t- test 

HCN00 maintainability, 
understandability 

DIT (flat vs deep inheritance 
structure) 

4 versions of a university admin IS 
system, 2x0, 1x3, 1x5 levels of 
inheritance; 4x12 student subjects 

4x12 between 
subject; chi 
square to 
compare groups 

LC92 understandability, 
modifiability, “debugability” 
(time, correctness, 
completeness to perform 
these tasks) 

flat vs deep inheritance 
structure 

2 groups (5&6 students) within subject, 2 
groups, three 
diff. tasks 

WDMR99 maintainability (time for 
maintenance task) 

flat vs deep inheritance 
structure 

3x2 systems, C++, 400-500 LOC; 31 
student subjects, 3 runs 

blocked design, 
1 internal rep.; 
Wilcoxon sign 
rank and rank 
sum test 

 

Controlled experiments are far fewer in number than correlational studies. The studies mostly investigate 
aspects of system understandability and maintainability as dependent variable, and usage of inheritance as the 
independent variable. Also, we see that the controlled experiments are usually performed in a university setting 
with student subjects. 

The qualitative results of these experiments will be summarized in Section 4.2. 

2.4 Discussion 

From the tables above, we can see there is a large number of studies that have already been reported. The 
great majority of them are correlational studies. One of the reasons is that it is difficult to perform controlled 
experiments in industrial settings. Moreover, preparing the material for such experiments (e.g., alternative, 
functional designs) is usually costly. With correlational studies, actual systems and design documents can be 
used.  

Another important observation is that the analysis procedures that are followed in across the correlational studies 
vary a great deal. To some extent, some variation is to be expected, as alternative analysis procedures are 
possible. But many of the studies are actually not optimal in terms of the techniques being used. For instance, 
[AM96] overfits the data and performs a great number of statistical tests without using appropriate techniques for 
repeated testing. We therefore need to facilitate the comparison of studies, to ensure that the data analysis is 
complete and properly reported. Only then it will be possible to build upon every study and develop a body of 
knowledge that will allow us to determine how to use structural measurement to build quality models of object-
oriented software. Section 3 provides a detailed procedure that has been first used (with minor differences) in a 
number of articles [BWDP00, BWL01, BMW01, BW01]. Such a procedure will make the results of a study more 
interpretable—and thus easier to compare—and the analysis more likely to obtain accurate prediction models.  



 9

3 Data Analysis Methodology 

Recall that our focus here is to explain the relationships between structural measures of object-oriented designs 
and external quality measures of interest. In this section, because we focus on data analysis procedures and 
multivariate modeling, we will refer to these measures as independent and dependent variables, respectively. 
For the sake of brevity they will be denoted as IVs and DVs.  

Our goal here is not to paraphrase books on quantitative methods and statistics but rather to clearly make the 
mapping between the problems we face and the techniques that exist. We also provide clear, practical 
justifications for the techniques we suggest should be used.  

On a high level, the procedure we have used [BWDP00, BWL01, BMW01, BW01] consists of the following 
steps.  

1.  Descriptive statistics [Hay94] 
Analysis of the frequency distributions of the IVs. This will help to explain some of the results observed in 
subsequent steps and is also crucial to explain differences across studies. 

2.  Principal component analysis (PCA) [Dun89] 
In the investigation of measures of structural properties, it is common to have much collinearity between 
measures capturing similar underlying phenomena. PCA is a standard technique to determine the 
dimensions captured by our IVs. PCA will help us better interpret the meaning of our results in subsequent 
steps 

3.  Univariate analysis  
Univariate regression analysis looks at the relationships between each of the IVs and the DV under study. 
This is a first step to identify types of IVs that are significantly related to the DV and thus are potential 
predictors to be used in the next step. 

4.  Prediction model construction (multivariate analysis)  
Multivariate analysis also looks at the relationships between IVs and the DV, but considers the former in 
combination, as covariates in a multivariate model, in order to better explain the variance of the DV and 
ultimately obtain accurate predictions. To measure the prediction accuracy, different modeling techniques 
(e.g., OLS [Lew80], logistic regression, Poisson regression [Lon97]) have specific measures of goodness of 
fit of the model. 

5.  Prediction model evaluation  
In order to get an estimate of the predictive power of the multivariate prediction models that is more realistic 
than goodness-of-fit, we need to apply models to data sets other than those from which they were derived. A 
set of procedures known as cross-validation [Sto74] should be carried out. Typically, such a procedure 
consists in dividing the data set into V pieces and use them in turn as test data sets, using the remainder of 
the data set to fit the model. This is referred to as V-cross validation and allows the analyst to get a realistic 
accuracy prediction even when a data set of limited size is available. Based on the results of the cross-
validation, the benefit of using the model in a usage scenario should then be demonstrated.  

The above procedure is aimed at making studies and future replications repeatable and comparable across 
different environments. In the following, we describe and motivate each step in more detail. 



 10

3.1 Descriptive statistics  

Within each case study, the distribution (mean, median, and interquartile ranges) and variance (standard 
deviation) of each measure is examined. Low variance measures do not differentiate classes very well and 
therefore are not likely to be useful predictors. The range and distribution of a measure determines the 
applicability of subsequent regression analysis techniques. Analyzing and presenting the distribution of 
measures is important for the comparison of different case studies2. It allows us to determine if the data 
collected across studies stem from similar populations. If not, this information will likely be helpful to explain 
different findings across studies. 

Also, this analysis will identify measures with potential outlying values, which will be important in the subsequent 
regression analyses. Univariate and multivariate outlier analysis are discussed in their respective sections.  

3.2 Principal component analysis 

It is common to see groups of variables in a data set that are strongly correlated. These variables are likely to 
capture the same underlying property of the object to be measured. Principal component analysis (PCA) is a 
standard technique to identify the underlying, orthogonal dimensions (which correspond to properties that are 
directly or indirectly measured) that explain relations between the variables in the data set. For example, 
analyzing a data set using PCA may lead to the conclusions that all your measures come down to measuring 
some aspect of class size and import coupling.  

Principal components (PCs) are linear combinations of the standardized IVs. The sum of the square of the 
weights in each linear combination is equal to one. PCs are calculated as follows. The first PC is the linear 
combination of all standardized variables that explain a maximum amount of variance in the data set. The 
second and subsequent PCs are linear combinations of all standardized variables, where each new PC is 
orthogonal to all previously calculated PCs and captures a maximum variance under these conditions. Usually, 
only a subset of all variables shows large weights and therefore contributes significantly to the variance of each 
PC. To better identify these variables, the loadings of the variables in a given PC can be considered. The loading 
of a variable is its correlation with the PC. The variables with high loadings help identify the dimension the PC is 
capturing but this usually requires some degree of interpretation. In other words, one assigns a meaning or 
property to a PC based on the variables that show a high loading. For example, one may decide that a particular 
PC mostly seems to capture the size of a class.  

In order to further ease interpretation of the PCs, we consider the rotated components. This is a technique where 
the PCs are subjected to an orthogonal rotation in the sample space. As a result, the resulting principal 
components (referred to as rotated components) show a clearer pattern of loadings, where the variables either 
have a very low or high loading, thus showing either a negligible or a significant impact on the PC. There exist 
several strategies to perform such a rotation, the varimax rotation, being the most frequently used strategy in the 
literature.  

For a set of n measures there are, at most, n orthogonal PCs, which are calculated in decreasing order of 
variance they explain in the data set. Associated with each PC is its eigenvalue, which is a measure of the 
variance of the PC. Usually, only a subset of the PCs is selected for further analysis (interpretation, rotated 
components, etc.). A typical stopping rule that we also use in our studies is that only PCs whose eigenvalue is 
larger than 1.0 are selected. See [Dun89] for more details on PCA and rotated components. 

We do not consider the PCs themselves for use as independent variables in the prediction model. Although this 
is often done with ordinary least- square (OLS) regression, in the context of logistic regression, this has shown to 
result in models with a sub-optimal goodness of fit (when compared to models built using the measures directly), 
and is not current practice. In addition, principal components are always specific to the particular data set on 
which they have been computed, and may not be representative of other data sets. A model built using principal 
components is not likely to be applicable across different systems. 

Still, it is interesting to interpret the results from regression analyses (see next sections) in the light of the results 
from PCA, e.g., analyze from which PCs the measures that are found significant stem from. This shows which 
dimensions are the main drivers of fault-proneness, and may help explain why this is the case. 

                                                      
2 Note that one strong conclusion that comes from our experience analyzing data and building models is that we will 

only be able to draw credible conclusions regarding what design measures to use if we are able to replicate 
studies across a large number of environments and compare their results.  



 11

Regarding replicated studies, it is interesting to see which dimensions are also observable from PCA results in 
other systems, and find possible explanations for differences in the results, e.g., a different design methodology. 
We would expect to see consistent trends across systems for the strong PCs that explain a large percentage of 
the data set variance, and can be readily interpreted. From such observations, we can also derive 
recommendations regarding which measures appear to be redundant and need not be collected, without losing a 
significant amount of design information. 

As an example of an application of PCA, and the types of conclusions we can draw from it, Table 3 shows the 
rotated components obtained from cohesion measures applied to the system in [BW01]. The measures mostly 
capture two orthogonal dimensions (the rotated components PC1 and PC2) in the sample space formed by all 
measures. Those two dimensions capture 81.5% of the variance in the data set. Analyzing the definitions of the 
measures with high loadings in PC 1 and PC2 yields the following interpretations of the cohesion dimensions:  

• PC1: Measures LCOM5, COH, CO, LCC, TCC are all normalized cohesion measures, i.e., measures 
that have a notion of maximum cohesion. 

• PC2: Measures LCOM1-LCOM3, and ICH are non-normalized cohesion measures, which have no upper 
bound.  

Table 3: Rotated components for cohesion measures (from [BW01]) 

 PC1 PC2 

EigenValue: 4.440 3.711 

Percent: 44.398 37.108 

CumPercent: 44.398 81.506 

LCOM1 0.084 0.980 

LCOM2 0.041 0.983 

LCOM3 -0.218 0.929 

LCOM4 -0.604 0.224 

LCOM5 -0.878 0.057 

Coh 0.872 -0.113 

Co 0.820 0.139 

LCC 0.869 0.320 

TCC 0.945 0.132 

ICH 0.148 0.927 

 

As discussed in [BDW98], many of the cohesion measures are based on similar ideas and principles. 
Differences in the definitions are often intended to improve of shortcomings of other measures (e.g., behavior of 
the measure in some pathological cases). The results show that these variations, based on careful theoretical 
consideration, do not make a substantial difference in practice. By and large, the measures investigated here 
either capture normalized or non-normalized cohesion, measures of the latter category having been shown to be 
related to the size of the class in past studies ([BWDP00, BWL01]). 

3.3 Univariate Regression analysis 

Univariate regression is performed for each individual IV against the DV, in order to determine if the measure is 
a potentially useful predictor. Univariate regression analysis is conducted for two purposes:  

• to test the hypotheses that the IVs have a significant statistical relationship with the DV.  

• to screen out measures that are not significantly related to the DV and not likely to be significant 
predictors in multivariate models. Only measures that are significant at significance level, say α=0.25 
[HL89], should be considered for the subsequent multivariate analysis. 

Note that some IV may be significantly related to the DV for various reasons. It may capture a causal relationship 
or be the result of a confounding effect with another IV. Because of the repeated testing that is taking place 
during univariate analysis, there is a non-negligible chance to obtain a spurious relationship obtained by chance. 
Though a number of techniques exist to deal with repeated testing (e.g., Bonferroni [Mil81]), this is not an issue 
here as we are not trying to demonstrate or provide evidence for a causal relationship. Our goal is to pre-select a 
number of potential predictors for multivariate analysis, which will tell us in turn which IVs seem to be useful 



 12

predictors. Causality cannot really be demonstrated in this context and only a careful definition of the design 
measures used as IVs, along with plausible mechanisms to explain causality, can be provided.  

The choice of modeling technique for univariate analysis (and also the multivariate analysis that follows) is 
mostly driven by the nature of the DV: its distribution, measurement scale, whether it is continuous or discrete. 
Examples from the literature include: 

• Logistic regression to predict the likelihood for an event to occur, e.g., fault detection [BWDP00, 
GEMM00]. 

• Ordinary least-squares regression, often combined with monotonic transformation (logarithmic, 
quadratic) of the IVs and/or DV, to predict interval/ratio scale DVs [BW01, CS00]. 

• Negative binomial regression (of which poisson regression is a special case) to predict discrete DVs that 
have low averages and whose distribution is skewed to the right [BW01]. 

• Parametric and non-parametric measures of correlation (Spearman Rho, Pearson r) are sometimes 
used. But they can only provide a rough picture and are not as practical as they do not account for non- 
linearities and are not comparable to the multivariate modeling techniques we present below. 

3.3.1 Univariate Outliers 

Outliers are data points that are located in an empty part of the sample space [BP95]. Inclusion or exclusion of 
outliers can have a large influence on the analysis results. It is important that conclusions drawn are not solely 
dependent on a few outlying observations, otherwise, the resulting prediction models are unstable and cannot be 
reliably used. When comparing results across replicated studies, it is particularly crucial to ensure that 
differences in observed trends are not due to singular, outlying data points. For this reason it is necessary to 
identify outliers, test their influence, and possibly remove them to obtain stable results.  

For univariate analysis, all observations must be checked for outlying values in the distribution of any one of the 
measures used in the study. The influence of the identified observation is tested: an outlier is influential, if the 
significance of the relationship between the measure and the DV depends on the absence or presence of the 
outlier. Such influential outliers should not be considered in the univariate analysis results. Outliers may be 
detected from scatterplots, and their influence systematically tested. 

For many regression techniques, specific diagnostics to automatically identify outliers were proposed, e.g., 
Cooks Distance for OLS [BP95], Pregibon beta for logistic regression [Pre81]. 

3.4 Prediction Model Construction 

Multivariate regression is performed to build prediction models of the DV. This analysis is conducted to 
determine how well we can predict the DV, when the design measures are used in combination. For the 
selection of measures to be used in the model, a strategy must be employed that  

• Select an appropriate number of independent variables in the model. Overfitting a model increases the 
standard error of the model’s prediction, making the model more dependent on the data set it is based 
on and thus less generalizable.  

• Reduces multicollinearity [BKW80], i.e., independent variables which are highly correlated. High 
multicollinearity results in large standard errors for regression coefficient estimates and may affect the 
predictive power of the model. It also makes the estimate of the impact of one IV on the DV difficult to 
derive from the model.  

3.4.1 Stepwise selection process 

Often, the validation studies described here are exploratory in nature, that is, we do not have a strong theory that 
tells us which variables should be included in the prediction model and which not. In this situation, a stepwise 
selection process can be used, where prediction models are built in a stepwise manner, where each step 
consists of one variable entering or leaving the model. 

The two major stepwise selection processes used for regression model fitting are forward selection and 
backward elimination [HL89]. The general forward selection procedure starts with a model that includes the 
intercept only. Based on certain statistical criteria, variables are selected one at a time for inclusion in the model, 
until a stopping criterion is fulfilled. Similarly, the general backward elimination procedure starts with a model that 
includes all independent variables. Variables are selected one at a time to be deleted from the model, until a 
stopping criterion is fulfilled. 



 13

When investigating a large number of independent variables, the initial model in a backward selection process 
would contain too many variables and could not be interpreted in a meaningful way. In that case, we use a 
stepwise forward selection procedure to build the prediction models. In each step, all variables not already in the 
model are tested: the most significant variable is selected for inclusion in the model. If this causes a variable 
already in the model to become not significant (at some level of significance αExit), it is deleted from the model. 
The process stops when adding the best variable no longer improves the model significantly (at some 
significance level αEnter< αExit). 

A commonly used procedure to reduce the number of independent variables to make possible the use of a 
backward selection process is by pre- selecting variables using the results from principal component analysis: 
the highest loading variables for each principal component is selected and then the backward selection process 
run on this reduced set of variables. In our studies [BWDP00, BWL00], within the context of logistic regression, 
this strategy showed the goodness of fit of the models thus obtained to be poorer than the models obtained from 
the forward stepwise procedure, hence favoring the use of latter.  

The choice of significance levels for measures to enter and exit the model is an indirect means to control the 
number of variables in the final model. A rule of thumb for the number of covariates is to have at least ten data 
points per independent variable. 

Criticism of stepwise selection heuristics 

Stepwise selection procedures have been criticized for a number of reason: (1) the inclusion of noise variables in 
the presence of multicollinearity - clearly an issue with our design measures, (2) the number of variables that are 
selected is a function of the sample size and is often too large. This casts doubt on the trustworthiness of a 
model built in such a fashion. In [EBGR01], the authors state that “variables selected through such a procedure 
cannot not be construed as the best object-oriented metrics, nor even as good predictors of the DV”. However, 
many IVs can typically be replaced other related IVs (i.e., confounded measures, belonging to the same principal 
component in PCA) without a significant loss of fit. In addition, our studies show that trends between design 
measures and system quality frequently vary across systems [BMW01, BWL01], and a prediction model built 
from one system is likely to be representative of only a small number of systems developed in the same 
environment. The particular measures selected for a model are not of much general importance. Therefore, the 
goal of building multivariate models using stepwise heuristics is not to determine what are the “best” metrics or 
whether they are the only or best predictors. The most we can hope for is that the properties / dimensions (i.e., 
principal components) captured by the measures are relevant, frequently represented in the predictive models, 
and can explain most of the variance in the DV. In short, our aim here is only to obtain an optimal predictive 
model, as defined in Section 3.5.  

Stepwise variable selection is a standard technique frequently used in the literature. It is certainly true that the 
output from such a stepwise selection heuristic cannot be blindly relied upon. It is necessary to perform a 
number of sanity checks on the resulting model: (1) the number of covariates is reasonable considering the size 
of the data set, (2) the degree of collinearity among covariates is acceptable [BKW80], (3) no outlier is 
overinfluential with respect to the selection of covariates. If violations of these principles are detected, they can 
be amended by adjusting (1) inclusion/ exclusion thresholds, (2) removing covariates or (3) dismissing data 
points. We think the results obtained from a model that passes these checks, and also performs reasonably well 
in the subsequent model evaluation (see Section 3.5), are trustworthy at least in that they indicate the order of 
magnitude of the benefits that we can expect to achieve from a prediction model built in the same fashion in any 
given environment. 

3.4.2 Capturing non-linear or local trends and interactions 

When analyzing and modeling the relationship between IVs and DVs, one of the main issues is that relationships 
between these variables can be complex (non-linear) and involve interaction effects (the effect of one variable 
depends on the value of one of more other variables). Because we currently know little about what to expect and 
because such relationships are also expected to vary from one organization and family of systems to another, 
identifying non-linear relationships and interaction effects is usually a rather complex, exploratory process.  

Data mining techniques such CART Regression tree analysis [BFOS84, BW01] makes no functional form 
assumption about the relationship of IVs and DV. In addition, the tree construction process naturally explores 
interaction effects. Another recent technique, MARS (Multivariate Adaptive Regression Splines) [Fri91], attempts 



 14

to approximate complex relationships by a series of linear regressions on different intervals of the independent 
variable ranges and automatically searches for interactions. Both techniques can be combined with traditional 
regression modeling [BW01]. 

Hybrid Models with Regression Trees 

Adapting some of the recommendations in [SC99], traditional regression analysis and regression trees can be 
combined into a hybrid model as follows:  

•  Run regression trees analysis, with some restrictions on the minimum number of observations in each 
terminal nodes (in order to ensure that samples will be large enough for the next steps to be useful).  

•  Add dummy variables (binary) to the data set by assigning observations to terminal nodes in the 
regression trees, i.e., assign 1 to the dummy variable for observations falling in its corresponding 
terminal node. There are as many dummy variables as terminal nodes in the tree. 

•  Together with the IVs based on design measures, the dummy variables can be used as additional 
covariates in the stepwise regression. 

This procedure takes advantage of the modeling power of regression analysis while still using the specific 
interaction structures that regression trees can uncover and model. As shown in [BW01], such properties may 
significantly improve the predictive power of multivariate models.  

Multivariate Adaptive Regression Splines (MARS) 

As previously discussed, building quality models based on structural, design measures is an exploratory 
process. MARS is a novel statistical method that has shown to be useful in helping the specification of 
appropriate regression models in an exploratory context. This technique is presented in [Fri91] and is supported 
by a recent tool developed by Salford Systems3. At a high level, MARS attempts to approximate complex 
relationships by a series of linear regressions on different intervals of the independent variable ranges (i.e., 
subregions of the independent variable space). It is very flexible as it can adapt any functional form and is thus 
suitable to exploratory data analysis. Search algorithms find the appropriate intervals on which to run 
independent linear regressions, for each independent variable, and identify interactions while avoiding overfitting 
the data. Though these algorithms are complex and out of the scope of this paper, MARS is based on a number 
of simple principles. MARS identifies optimal basis functions based on the IVs and these basis functions are then 
used as candidate covariates to be included in the regression model. When we are building, for example, a 
classification model (such as a fault-proneness model), we use MARS in two steps: (1) Use the MARS 
algorithms to identify relevant basis functions, (2) Refit the model with logistic regression, using the basis 
functions as covariates [BW01]. Our experience has shown that MARS was helpful in building more accurate 
predictive models [BW01, BMW01]. 

3.4.3 Multivariate outliers 

Just as univariate analysis results are susceptible to univariate outliers, multivariate models can be strongly 
influenced by the absence or presence of individual observations. Our set of n independent variables spans an 
n-dimensional sample space. To identify multivariate outliers in this sample-space, we calculate, for each data 
point, the Mahalanobis Jackknife [Eve93] distance from the sample space centroid. The Mahalanobis Distance is 
a measure that takes correlations between measures into account. Multivariate outliers are data points with a 
large distance from the sample space centroid. Again, a multivariate outlier may be over-influential and therefore 
removed, if the significance of any of the n variables in the model depends on the absence or presence of the 
outlier. A subtle point here occurs when dismissing an outlier causes one or more covariates in the model 
resulting from a stepwise selection heuristic to become insignificant. In that case, our strategy is to rerun the 
stepwise selection heuristic from scratch excluding the outlier from the beginning. More detailed information on 
outlier analysis can be found in [BP95]. 

                                                      

3 www.salford-systems.com 



 15

3.4.4 Test for multicollinearity 

Multivariate models should be tested for multicollinearity. In severe cases, multicollinearity results in inflated 
standard errors for the estimated coefficients, which renders predicted values of the model unreliable. The 
presence of multicollinearity also makes the interpretation of the model difficult, as the impact of individual 
covariates on the dependent variable can no longer be judged independently from other covariates.  

According to [HL89], tests for multicollinearity used in least-squares regression are also applicable in the context 
of logistic regression. They recommend the test suggested by Belsley et al. [BKW80], which is based on the 
conditional number of the correlation matrix of the covariates in the model. This conditional number can 
conveniently be defined in terms of the eigenvalues of principal components as introduced in Section 3.2.  

Let X1,..., Xn be the covariates of our model. We perform a principal component analysis on these variables, and 
set lmax to be the largest eigenvalue, lmin the smallest eigenvalue of the principal components. The conditional 
number is then defined as minmax / ll=λ  A large conditional number (i.e., discrepancy between minimum and 
maximum eigenvalue) indicates the presence of multicollinearity. A series of experiments showed that the 
degree of multicollinearity is harmful, and corrective actions should be taken, when the conditional number 
exceeds 30 [BKW80]. 

3.4.5 Evaluating goodness of fit 

The purpose of building multivariate models is to predict the DV as accurately as possible. Different regression 
techniques provide specific measures for a model’s goodness of fit, for instance R-squared for OLS or methods 
based on maximum likelihood estimation such as logistic regression. While these allow, to some degree, for 
comparison of accuracy between studies, such measures are abstract mathematical artifacts that do not 
illustrate very well the potential benefits of using the prediction model for decision-making. 

We provide below a quick summary of goodness of fit measures that users of prediction models tend to use to 
evaluate the practicality of using a model. There are two main cases that have to be dealt with in practice: (1) 
classification (such as classifying components as fault-prone or not), (2) predicting a continuous DV on an 
interval or ratio scale. We will use an example of each category to illustrate practical measures of goodness of 
fit.  

Classifying Fault-proneness 

To evaluate the model’s goodness of fit, we can apply the prediction model to the classes of our data set from 
which we derived the model4. A class is classified fault-prone, if its predicted probability to contain a fault is 
higher than a certain threshold p0. Assume we use this prediction to select classes to undergo inspection. 
Further assume that inspections are 100% effective, i.e., all faults in a class are found during inspection. 

We then compare the predicted fault-proneness of classes to their actual fault-proneness. We then use the 
following measures of the goodness of fit of the prediction model: 

•  Completeness: 
Completeness, in this context, is defined as the number of faults in classes classified as fault-prone, 
divided by the total number of faults in the system. It is a measure of the percentage of faults that would 
have been found if we used the prediction model to drive inspections. Low completeness indicates that, 
despite the use of the classification model, many faults are not detected. These faults would then slip to 
subsequent development phases, where they are more expensive to correct. 
We can always increase the completeness of our prediction model by lowering the threshold p0 used to 
classify classes as fault-prone (π>p0). This causes more classes to be classified as fault-prone, thus 
completeness increases. However, the number of classes that are incorrectly being classified as fault-
prone also increases. It is therefore important to consider the correctness of the prediction model. 

•  Correctness: 
Correctness is the number of classes correctly classified as fault- prone, divided by the total number of 
classes classified as fault-prone. Low correctness means that a high percentage of the classes being 
classified as fault-prone do not actually contain a fault. We want correctness to be high, as inspections 
of classes that do not contain faults is an inefficient use of resources.  

                                                      
4  This is, of course, an optimistic way to assess a model. This is why the term goodness-of-fit is used, as opposed to predictive power. This issue will be 

addressed in Section 3.5. 



 16

These definitions of completeness and correctness have straightforward, practical interpretations. They can be 
used to other application contexts where a classification models is required. A drawback of these measures is 
that they depend on a particular classification threshold. The choice of threshold is system-dependent and, to a 
large degree, arbitrary. To achieve comparability between studies and models, we can, however, employ a 
consistent strategy for threshold selection, such as using prior probability (proportion) of fault-prone classes, or 
selecting threshold p0 so as to balance the number of actually faulty and predicted fault-prone classes. Plotting 
the correctness and completeness curves as a function of the selected threshold p0 is also a good, common 
practice [BWDP00], as shown in Figure 1.  

As an example, we show here the fault-proneness classification results from a model (“Linear” logistic regression 
Model) built in [BMW01]: 

Table 4: Fault-proneness classificationi results (Linear Model in [BMW01]) 

 

 

 

 

Predicted Σ 

  π<0.5 π>0.5  

Actual No fault 108 5 113 

 Fault 17 (50 faults) 14 (82 faults) 31 (132 faults) 

Σ 125 19 144 

 

The model identifies 19 out of 144 classes as fault-prone (i.e., 13% of all classes). Of these, 14 actually are 
faulty (74% correctness), and contain 82 out of 132 faults (62% completeness).  

The above figures are based on a cutoff value of π=0.5 for predicted fault- prone/not fault-prone classes, and the 
table only gives a partial picture, as other cut-off values are possible. Figure 1 shows the correctness and 
completeness numbers (vertical axis) as a function of the threshold π (horizontal axis). 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correctness Completeness

π
 

Figure 1: Correctness/completeness graph (for “Linear model” in [BMW01]) 

Standard measures of the goodness of fit used in the context of logistic regression models are sensitivity, 
specificity, and the area under the receiver-operator-curve (ROC) [GS74]. Sensitivity is the fraction of observed 
positive outcome cases that are correctly classified (i.e., the fraction of faulty classes correctly classified fault-
prone, which similar to completeness as defined above). Specificity is the fraction of observed negative 
outcomes cases correctly classified (i.e., the fraction of non- faulty classes correctly classified not fault-prone). 
Calculating sensitivity and specificity too requires a selection of a particular threshold p. The receiver-operator 
curve is a graph of sensitivity versus 1-specificity as the threshold p is varied. The area under the ROC is a 
common measure of the goodness of fit of the model - a large area under the ROC indicates that high values for 
both sensitivity and specificity can be achieved. The advantage of the area under the ROC is that this measure 
does not necessitate the selection of a particular threshold. The drawback is that its interpretation (i.e., 



 17

probability that a randomly selected faulty class has a higher predicted fault-proneness than a randomly selected 
not faulty class) has no immediate interpretation in the context of a practical application of the model. 

Predicting development effort 

We use here development effort as an example for the prediction of continuous, interval/ratio scale DVs. In the 
area of effort estimation, the most commonly used measures of prediction accuracy are the absolute relative 
error (ARE) and the magnitude of relative error (MRE) of the effort prediction. If eff  is the actual effort (e.g., for 

a class or system), and ffeˆ  the predicted effort. Then, 

 |ˆ| ffeeffARE −= , and effffeeffMRE /|ˆ| −= /  

The percentage (or absolute value in terms of person hours) that a predicted effort is on average off is 
immediately apparent to a practitioner and can be used to decide whether the model can be of any practical 
help. ARE and MRE measures can readily be used in other contexts than effort estimation.  

3.4.6 The impact of design size 

The size of an artifact (e.g., class designs) is a necessary part of any model predicting a property (e.g., fault 
proneness) of this artifact. This is mostly justified by the fact that size determines, to some extent, many of its 
external properties such as fault-proneness or effort. On the one hand, we want our predictive models to account 
for size. But in many cases, e.g., in the case of fault-proneness models, and for practical reasons, we need them 
to capture more than size effects. Using again our inspection example, a model that systematically identifies 
bigger classes as more fault-prone would a priori be less useful: the predicted fault-prone classes are likely to 
cover a larger part of the system and the model could not help focus inspection and testing efforts very well.  

In our studies [BWDP00, BWL01, BW01], we compare models built from (1) size measures only and (2) models 
allowing all measures (size, coupling, cohesion, inheritance) to enter the model. With these models, we seek to 
find answers to the following questions: 

• Are coupling, cohesion, and inheritance (CCI) measures complementary predictors of the DV as 
compared to size measures alone? 

• How much more accurate is a model including the more difficult to collect coupling, cohesion, and 
inheritance measures5? If it is not significantly better, then the additional effort of calculating these more 
expensive measures instead of some easily collected size measures would not be justified. 

When the DV is class fault-proneness and the measures are collected based on design information, the results 
[BWL01, BMW01] so far have shown that  

• Models including CCI measures clearly outperform models based on size measures only. Even though 
they may be related to size, CCI measures therefore capture information related to fault-proneness that 
cannot be explained by size alone.  

• There is no significant difference between models based on CCI measures only and models based on 
both CCI and size measures. This indicates that all size aspects that have a bearing on fault-proneness 
are also accounted for by the set of CCI measures investigated. In other words, the CCI measures are 
not just complementary to the size measures, they subsume them. 

When the DV is effort [BW01], however, it appears that the size accounts for most of the variation in effort, and 
more sophisticated CCI measures do not help to substantially improve the model’s predictive capability. 

In the model building strategy proposed by El Emam et al [EBGR01], a size measure is forced in the predictive 
model by default. Measures that are confounded by size are not considered for inclusion in the model. This is an 
alternative strategy and which one to use depends on your purpose. If you want to build an optimal prediction 
model and determine what are useful predictors, then the procedure we outlined above is fine. If your goal is to 
demonstrate that a given measure is related to fault-proneness, or any other DV, and that this relationship 
cannot be explained by size effects, then the procedure in [EBGR01] is appropriate. 

                                                      
5 Such measures usually require the use of complex static analyzers 



 18

3.5 Prediction model evaluation 

We discussed above the notion of goodness-of-fit and practical ways to measure it. However, though such 
measures are useful to compare models built on a given data set, they present two limitations 

•  They are optimistic since we have to expect the model’s predictive accuracy to deteriorate when it is 
applied to different data sets than the one it is built on. 

•  They still do not provide information that can be used directly to assess whether a model can be 
useful under given circumstances. 

Those two issues are addressed by the next two subsections.  

3.5.1 Cross validation 

One of the commonly encountered problems in software engineering is that our data sets are usually of limited 
size, i.e., a few hundred observations when we are lucky. Dividing the available data into a modeling set and a 
test set is usually difficult as it implies that either the test set is going to be too small to obtain representative and 
reliable results or the modeling set is going to be too small to build a refined predictive model. One reasonable 
compromise is to use a cross-validation procedure. To get an impression of how well the model performs when 
applied to different data sets, i.e., its prediction accuracy, a cross-validation should be carried out. 

Depending on the availability and size of the data set, various cross-validation techniques can be used 

• V-cross validation [Sto74] is what we used in our studies [BWDP00, BW01, BMW01]. For the V-cross 
validation, the n data points of each data set are randomly split into V partitions of roughly equal size 
(n/V). For each partition, we re-fit the model using all data points not included in the partition, and then 
apply the resulting model to the data points in the partition. We thus obtain for all n data points a 
predicted probability of their fault-proneness (or predicted development effort).  

• Leave-one-out cross validation, a special case of V-cross validation, where V=n-1, used for very small 
data sets. 

• For larger data sets, one can randomly partition the data set in a fit/ modeling data partition (usually 2/3 
of all observations) used to fit the model, and a test data partition (all remaining observations). 

The ideal situation is where separate data sets, derived from different systems stemming from similar 
environments, are available. The prediction model is built from one system that is used in turn to make prediction 
for the other system. This is the most effective demonstration of the practical use of a prediction model. 
Typically, models are built on past systems and used to predict properties of new systems or their components. 
System factors may affect the predictive power of a model and, therefore, it is important to validate the model 
under conditions that resembles as closely as possible its usage conditions. [BMW01] report such a study where 
the authors introduce a cost-effectiveness model for fault-proneness models. This is described further in the next 
section.  

3.5.2 Cost-benefit model for class fault-proneness prediction 

Goodness-of-fit or predictive power does not give the potential users of a model a direct means to assess 
whether the model can be practically useful to them. We need to develop cost-benefit models that are based on 
realistic assumptions and that use parameters that can be either measured or estimated. Though it is difficult to 
further specify general rules to build such models in our context, we will use an example to illustrate the 
principles to follow: How can we determine whether a fault-proneness model would be economically viable if 
used to drive inspections? The first step is to identify all the parameters that the model will be based on. At the 
same time, list all the assumptions on which the model will be based regarding these parameters. Such 
assumptions are usually necessary to help simplify the cost-benefit model. Some of these assumptions will 
inevitably be specific to an environment and can very well be unrealistic in others. What we present here is 
based on a study reported in [BMW01]: 

• All classes predicted fault-prone are inspected. 

• Usually, an inspection does not find all faults in a class. We assume an average inspection effectiveness 
e, 0 ≤ e ≤ 1, where e = 1 means that all faults in inspected classes are being detected. 



 19

• Faults that are not discovered during inspection (faults that slipped through, faults in classes not 
inspected) later cause costs for isolating and fixing them. The average cost of a fault when not detected 
during inspection is fc. 

• The cost of inspecting a class is assumed to be proportional to the size of the class. 

In general, in order to estimate the benefits of a model, we need a comparison baseline that represents what 
could be achieved without the use of the model. In our example, we assume a simple model that ranks the 
classes by their size, and selects the n largest classes for inspection. The number n is chosen so that the total 
size the selected classes is roughly the same as the total size of classes selected by fault-proneness model 
based on design (size and CCI) measures. It is thus ensured that we compare models where the investment – 
the cost of inspections – are the same or similar and can be factored out.  

For the specification of the model, we need some additional definitions. Let c1,....,cN denote the N classes in the 
system. For i=1,…,N, let 

• fi be the number of actual faults in class i. 

• pi indicates if class i is predicted fault-prone by the model, i.e., pi=1 if class i is predicted fault-prone, pi=0 
otherwise 

• si denotes the size of class i (measured in terms of the number of methods, though other measures of 
size are possible). 

The inspection cost is ic · si, where ic is the cost of inspection of one size unit. 

The next step is to quantify the gains and losses due to using the model. In our example, they are all expressed 
below in effort units, i.e., the effort saved and the effort incurred assuming inspections are performed on code. 

Gain (effort saved):  

g_m =defects covered and found  
g_m = e · fc · Σi(fi·pi) 

Cost (effort incurred):  

c_m = direct inspection cost + defects not covered +   defects that escape  
c_m =ic·Σi(si·pi) + fc·Σi(fi·(1-pi)) + (1-e)·fc·Σi(fi·pi) 

In the same way, we express the cost and gains of using the size ranking model (baseline) to select the n largest 
classes, so that their cumulative size is equal or close to Σi(si·pi), the size of classes selected by the predictive 
model6. For i=1,..,N, let p’i=1 if class i is among those n largest classes, and p’i=0 otherwise: 

g_s =  e · fc · Σi(fi·p’i) 

c_s = ic·Σi(si·p’i) + fc·Σi(fi·(1-p’i)) + (1-e)·fc·Σi(fi·p’i) 

We now want to assess the difference in cost and gain when using the fault-proneness model and size-ranking 
model, which is our comparison baseline: 

∆gain = g_m – g_s = e · fc · (Σi(fi·pi) - Σi(fi·p’i))  

∆cost =  c_m - c_s = ic·(Σi(si·pi)-Σi(si·p’i)) + fc(Σi(fi·(1-pi)) - Σi(fi·(1-p’i))) + (1-e)·fc(Σi(fi·pi) - Σi(fi·p’i)) 

We select n and therefore p’ so that Σi(si·pi)-Σi(si·p’i) � 0 (Inspected classes have roughly equal size in both 
situations). We can thus, as an approximation, drop the first term from the ∆cost equation. This also eliminates 
the inspection cost ic from the equation, and with it the need to make assumptions about the ratio fc to ic for 
calculating values of ∆cost. With this simplification, we have 

∆cost =  fc· (Σi(fi·(1-pi))- Σi(fi·(1-p’i))) + (1-e)·fc· (Σi(fi·pi) - Σi(fi·p’i)) 

By doing the multiplications and adding summands it is easily shown that  

∆cost =  - e · fc · (Σi(fi·pi) - Σi(fi·p’i)) = - ∆gain  

                                                      
6 We may not be able to get the exact same size, but we should be sufficiently close so that we perform the forthcoming simplifications. This is usually not 

difficult as the size of classes composing a system usually represent a small percentage of the system size. In practice, we can therefore make such an 
approximation and find an adequate set of n largest classes.  



 20

The benefit of using the prediction model to select classes for inspection instead of selecting them according to 
their size is  

benefit =  ∆gain - ∆cost =  2∆gain  = 2 · e · fc · (Σi(fi·pi) - Σi(fi·p’i)) 

Thus, the benefit of using the fault-proneness model is proportional to the number of faults it detects above what 
the size-based model can find (if inspection effort is about equal to that of the baseline model, as is the case 
here). The factor 2 is because the difference between not finding a fault and having to pay fc, and finding a fault 
and not having to pay fc is 2fc. 

Once such a model is developed, parameters e and fc are estimated in a given environment, and we can 
determine, for a given range of e values, the benefits (in effort unit) of using a fault-proneness model in function 
of fc, the cost of a defect slipping through inspections. Based on such information, one may decide whether 
using a predictive model for driving inspections can bring practical benefits. 

As an example, Figure 2 shows the benefit graph for two models, referred to as “linear” and “MARS” model. The 
benefit of using the linear or MARS model to select classes for inspection over a simple size-based selection of 
classes is plotted as a function of the number n of classes selected for inspection. The benefit is expressed in 
multiples of fc, assuming an inspection effectiveness e=80%.  

-10
0

10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Number of classes inspected

Benefit [fc] MARS Linear

 

Figure 2: Benefit graph for linear and MARS model from [BMW01] 

Besides the economical viability of a model, such a figure effectively demonstrates the advantages of one model 
over the other. It also helps to identify ranges for the number of selected classes, n, at which the model usage 
has its greatest pay-off. 

To decide whether a prediction model is worth using, some additional costs and constraints may also be 
accounted for such as, in our example, the cost of deploying the model: automation and training.  



 21

 

4 Summary of Results 

This section presents a summary of the empirical results reported in the studies of Section 2. It attempts to 
identify consistent trends across the results reported and discuss inconsistencies when they arise.  

4.1 Correlational Studies 

We focus here on correlational studies where the dependent variable is related to some measure of fault-
proneness. The reason is that this is the only dependent variable for which a large-enough number of studies 
exist and hence a cross examination of results is possible.  

4.1.1 Univariate Analysis of Fault-Proneness 

Tables Table 5 to Table 8 show the results from univariate analysis in studies using fault- proneness or the 
number of faults as dependent variable, for size, coupling, cohesion, and inheritance measures, respectively. 
The Table for size measures also includes measures presented as “complexity” measures, which in practice are 
often strongly correlated to simple size measures. The inheritance measures capture various properties of 
inheritance such as its depth or level of overloading. Each column provides the results for one study, each table 
row shows the results for one measure. The aim is to facilitate comparison of results where the same measure is 
investigated in several studies. 

In each table, row “Tech.” indicates the modeling technique used in each study - which is either univariate 
logistic regression (denoted as LR) or Spearman Rho (rho). For studies that investigate more than one system, 
row “System”, identifies the name of the system each column pertains to. 

In the body of the table, the semantic of the entries is as follows: 

• ++: measure has positive significant relationship at the 0.01 level 
• +: measure has positive significant relationship at the 0.05 level 
• O: measure has no significant relationship at the 0.05 level 
• -: measure has negative significant relationship at the 0.05 level 
• --: measure has negative significant relationship at the 0.01 level 
• na: the measure was considered, but showed no or little variation (measure not significant and not 

meaningful in the respective system). 

Though it may be desirable to provide more detailed results (e.g., regression coefficients, exact p-values) in the 
table, we chose this more compact summary for the following reasons: 

• In isolation, the magnitude of a regression coefficient is not meaningful, since this depends on the 
range and variation of the measure in the data sample.  

• These coefficients are not applicable in other environments and not really useful to report here. 
• Some studies do not provide detailed p-values, but only indicate if it is below a certain threshold. 
• To contain the size of the table. 
 

To further contain the size of the tables we made a number of simplifications while presenting the results from 
several studies: 

• In [BDW00] and [BWL01], coupling to library classes and coupling to non-library classes were 
measured separately. We show here the results for coupling to non-library. The results for coupling to 
non-library classes are mostly consistent, except that some coupling mechanisms occur less 
frequently there, resulting in more measures being “not applicable”. 

• In [EBGR01, EBGR99, EMM01, GEMM00], univariate analysis controlled for size (see subsequent 
discussion of “confounding effects”) by including both a size measure and a design measure in the 
regression equation. We report here the significance of the design measure only. 

• In [TK99], results for different types of faults (faults related to OO features or not) are reported, we 
show here the results for correlation against “all faults”, which should be consistent with the nature of 
faults accounted for in the other studies. 

• In [ABM96], three dependent variables are considered and we show here the results for defect 
density only. The results for the other DVs differ only marginally 



 22

 

Table 5: Summary of univariate analysis results for size measures 

 BDW00 BWI01 BMW01 BS98 CS00EBGR01 EBGR99 RL92TKC99 

Tech. LR LR LR rho rho rho LR LR LR rho   LRLR LR

System   CCM EFT      A B C 

ATTRIB      O        

STATES      ++        

EVNT      ++        

READS      ++        

WRITES      ++        

DELS      ++        

RWD              

LOC     O ++    ++    

LOC_B      ++        

LOC_H     ++ ++        

WMC-ss          ++    

WMC-1 / NMA / 

NMImp 

++ ++ ++ ++ ++  ++ O   O + O 

WMC-CC     ++  ++ O O ++    

NOMA           O + O 

AMC           + ++ O 

Stmts ++             

NAImp ++ ++ ++           

NMpub ++             

NMNpub +  ++           

NumPara ++ ++            

NAInh  o            

NMInh  o            

TotPrivAtrib   ++           

TotMethod   ++           

 



 23

 

Table 6: Summary of univariate analysis results for coupling measures 

 

A
B

M
96

 

B
D

W
00

 

B
W

I0
1 

B
M

W
01

 

B
S

98
 

C
S

00
 

E
B

G
R

01
 

E
B

G
R

99
 

E
M

M
01

 

G
E

M
M

00
 

H
C

N
98

 

R
L9

2 

T
K

C
99

 

Tech. rho LR LR LR rho rho rho LR LR LR LR8 LR8 rho rho rho LR LR LR 

System     CCM EFT      SEG1 SEG2  A B C 

COF +                  

CBO’ CK91                   

CBO CK94      O  + O ++   O O  O O O 

RFC-1  ++ ++  ++ ++  ++ O O      + + O 

RFC  ++ ++                

MPC  ++ ++                

ICP  ++ ++                

IH-ICP  o ++                

NIH-ICP  ++ ++                

DAC  + +                

DAC’  + +                

ACAIC  na na O      na na O       

OCAIC  + + ++      O O ++       

DCAEC  na na na      na na        

OCAEC  -- + O      na ++ +       

ACMIC  na + +      ++ na O       

OCMIC  o ++ ++      O + ++       

DCMEC  na o na      O na        

OCMEC  o ++ +      + ++ +       

AMMIC  o +       O         

OMMIC  ++ ++       O         

DMMEC  o o       O         

OMMEC  o ++       +         

IFCAIC  o na                

FCAEC  o na                

IFCMIC  na na                

FCMEC  na na                

IFMMIC  o na                

FMMEC  o na                

NAS             O -     

CC               ++    

AMC               ++    

CDM     ++ ++             

Fan-in     ++ ++             

Fan-out     ++ ++             

IC                O ++ O 

CBM                O + O 

 
 



 24

 

Table 7: Summary of univariate analysis results for cohesion measures 

 ABM96BDW00 BWI01 EBGR01 EBGR99 

Tech. rho LR LR LR LRLR 

MHF O      

AHF O      

LCOM1-CK91  o ++    

LCOM2-CK94  o + + O O 

LCOM3  + +    

LCOM4  o o    

LCOM5  o o    

Coh  -- o    

Co  o o    

LCC  o +    

TCC  o o    

ICH  ++ ++    

 
 
 

Table 8: Summary of univariate analysis results for inheritance and polymorphism-related measures 

 

A
B

M
96

 

B
D

W
00

 

B
W

I0
1 

B
M

W
01

 

B
M

99
 

B
S

98
 

 C
S

00
 

E
B

G
R

01
 

E
B

G
R

99
 

E
M

M
01

 

G
E

M
M

00
 

H
C

N
98

 

R
L9

2 

T
K

C
99

 

Tech. rho LR LR LR LR rho rho rho LR LR LR LR LR rho rho rho rho LR LR LR 

System      CCM EFT      SEG1 SEG2 SEG3  A B C 

DIT  ++ -- O   ++ ++ O  O ++ (qm) - -- o  O O O 

AID  ++ --                  

CLD  -- o                  

NOC  - o O  O na O na na O O + O O O  O O O 

NOP  ++ o                  

NOD  - o   O               

NOA  ++ o                  

NMO  + ++           - ++ O     

NMI  + o           O O O     

NMA  ++ ++                  

SIX  ++ o                  

CHNL      ++               

MIF -                    

AIF O                    

POF O                    

OVO    O O                

SPA    + O                

SPD     O                

DPA    ++ --                

DPD     O                

SP    + -                

DP    ++ -                

NIP    ++ O                

 



 25

Tables 5 to 8 are sparsely populated - most measures have been used only in the context of one or two studies. 
The only set of measures that have received a wider attention are the six measures by Chidamber and Kemerer 
[CK94]. This profusion of similar but different measures is of course a problem if we want to converge towards a 
stable body of knowledge. But it was unavoidable, in the past recent years, as the research was at an 
exploratory stage. The focus should know be on investigating further the use of measures that have shown 
significance in at least one study.  

Measures of complexity and size are consistently associated with fault- proneness or the number of faults, in the 
expected direction: the larger/ more complex the class, the more fault-prone. 

For coupling measures, we find a mixed picture 

•  CBO is significant in only 3 out of 10 instances 

•  RFC in 6 out of 8 instances (two insignificant cases due to controlling for size). This is not surprising as 
RFC has been shown to be a combination of size and import coupling [BDW99]. 

•  RFC-1, OCAIC, OCMEC, OMMIC, and OMMEC are mostly significant in the expected direction. 
Therefore, coupling due to parameter typing and method invocation are probably worth to investigate 
further in the future.  

Cohesion measures are rarely investigated empirically. An explanation may be that these measures are difficult 
to obtain from static analysis, as they require a detailed analysis of the class attribute usage by methods. The 
results show that overall, cohesion measures appear to have no significant relationship to fault-proneness, in 
particular normalized cohesion measures that have a notion of maximum cohesion [BDM98].  

For measures related to inheritance, the results related to the depth of a class (DIT) and the number of children 
are inconclusive. The use of inheritance mechanisms can increase the fault-proneness of deeper classes, 
decrease it, or have no effect on fault-proneness at all. 

Overall, a number of size and coupling measures consistently show a significant relationship in the expected 
direction. Only for inheritance-related measures DIT and NOC do we find entirely inconsistent trends, indicating 
that the use of inheritance has effects on fault-proneness that depend on other factors such as design 
methodology and experience [BWL01]. 

In general, even assuming consistent data analysis procedures, we have to expect some inconsistency in results 
across studies. This is due to the nature of the data set, different programming practices causing certain 
measures to display little variance in some cases, or, in some cases, different interpretation and implementation 
of the same measures (e.g., LCOM and CBO).  

Confounding Effects 

In [EBGR01], the authors discuss the notion of confounding effects of design measures with size. The idea is 
that a measure of a given design measure (e.g., import coupling) can show both a significant relationship to, say 
class fault-proneness, and class size. Class size also is an indicator of fault-proneness. The question then is 
whether the relationship between the design measures and fault-proneness is due the measures’ association 
with size, or to a causal relationship between the design property and fault-proneness. 

To test this possible confounding effect, the authors fit models including both a measure of size and a design 
measure, and investigate the significance of the design measure in this model. 

When controlling for size, the significance of some measure, in particular import coupling measures, drops, 
indicating that their relationship to fault- proneness is due these measures also being associated with size. This 
may be expected, as larger classes are likely to import more services and has been shown in a number of 
previous paper [BWDP00, BWL01]. Export coupling measures are also shown not to be affected by this. 

The authors then conclude results cast doubts on empirical validity claims made in the past as these empirical 
results were possibly biased by the confounding effect with size. However, it is interesting to note that controlling 
for size does not systematically “invalidate” measures in their studies. For example, OCMIC is found insignificant 
after controlling for size in [EBGR99], but significant after controlling for size in [GEMM00]. Furthermore, in the 
next section, where multivariate models are reported to predict fault-proneness, a number of studies have shown 
that models that are based on both coupling and size perform significantly better than size models alone 



 26

[BWPD00, BWL01]. But again, we have to expect variations across systems and another important point to 
consider is whether one’s objective is to build the most accurate prediction model possible or demonstrate a 
causal relationship. In some circumstances, coupling measures may not have main effect on say, fault-
proneness, but an interaction effect with size. 

OO Measures and thresholds 

One reoccurring suggested use of product measures is that they can be used to build simple quality benchmarks 
based on thresholds. If a product measure exceeds a certain threshold (e.g., size measured as the number of 
public methods), the class or module is either rejected and must be redesigned, or at least flagged as “critical”. 

In [BEGR00] and [EBML00], the authors conduct a refined univariate analysis to investigate if this assumption is 
supported by empirical data. To do this, they modified the regular univariate logistic regression models to force 
the inclusion of thresholds and compared those models with typical logistic regression models. In each case, the 
authors find no significant difference in goodness of fit between the threshold model and the simpler no-
threshold models. This result is rather intuitive as it is difficult to imagine why a threshold effect would exist 
between, for example, size measures and fault-proneness. This would imply a sudden, steep increase in fault-
proneness in a certain size value range, something that would be difficult to explain as it would imply, for 
example, a sharp increase in fault-proneness above a certain size threshold. Note that none of the other 
empirical studies reported here assume the existence of thresholds.  

4.1.2 Multivariate Prediction Models 

This section reports on what are possibly the results of highest practical importance: the prediction models, e.g., 
fault detection probability. Those models are usually multivariate models in the sense that they integrate the 
effect of more one structural measure. 

As we will see, many different measures are used in the various multivariate models, and these measures do not 
necessarily all capture different aspects of a class. Therefore, we first identify what are common dimensions 
captured by structural measures, and then investigate whether any of these dimensions are predominantly 
represented in the multivariate models. 

Principal Component Analysis 

As introduced in Section 3.2, Principal Component Analysis (PCA) is a technique aimed, in our context, at 
identifying the dimensions captured by structural measures. For example, does a coupling measure really 
capture what it is intended to or is that part of the dimension capturing the size of a class. 

We performed PCA for a large set of measures in the context of four different data sets [BWDP00, BWL01, 
BMW01, BW01]. Though there are differences in the dimensions identified from system to system, and how 
measures are allocated to dimensions, some dimensions reoccurred in two, three, or all studies, and we 
summarize them here as follows: 

1. Import coupling (through method invocation). Measures such as MPC, OMMIC, which count invocations of 
methods of other classes. Note that when distinguishing coupling to library and non-library classes, which tend to 
be orthogonal dimensions. However, this distinction was only made in two studies, so we do not separate them 
here. 

2. Class size, measured in terms of the number of methods (NMImp, WMC), method parameters (NumPar,...), 
class attributes, executable/declaration statements. 

3. Normalized cohesion measures (TCC, LCC etc), i.e., cohesion measures with an upper bound that represents 
maximal cohesiveness of methods and attributes. 

4. Export coupling to other classes - degree to which a class is used by other classes, be it as class parameter, 
class attribute, or via method invocation. 

5. Depth of inheritance tree below a class / degree to which a class is extended (NOC, CLD, etc.). 

6. Depth of class in inheritance tree / number of ancestor classes (DIT, NOP, etc.). 



 27

7. Import coupling from ancestor classes. Degree to which the added methods of a derived class make use of 
inherited methods (AMMIC, IH- ICP,...). 

8. Inherited size. Number of attributes/methods a class inherits (NMInh, NAInh,...). 

In the following discussion, we assign each measure to one of the above dimensions, in order to abstract from 
the individual measure and focus on the concept it captures. In cases were, based on empirical results across 
the four studies, a measure cannot be uniquely assigned to a particular dimension, we assign it to the dimension 
whose interpretation best matches the definition of the measures. 

Overview of Multivariate Models 

The following tables summarize the multivariate prediction models for fault-proneness or number of faults (Table 
9) and effort (Table 10) as dependent variable. Each row provides the details for one prediction model. The first 
three columns indicate the literature source, the modeling technique, and the procedure that was used to arrive 
at the model. The following eight columns list the covariates of the model, each column representing one of the 
above structural dimension. Each covariate is listed in the column of the dimension it was assigned to. Column T 
(total) reports the total number of covariates in the model. The last three columns reproduce whatever measures 
of goodness of fit of the model were reported, what type of cross-validation was performed, if any, and how well 
the model performed in cross-validation (i.e., its predictive power). 

 



 
28

T
ab

le
 9

: 
S

u
m

m
ar

y 
o

f 
m

u
lt

iv
ar

ia
te

 m
o

d
el

s 
fo

r 
fa

u
lt

-p
ro

n
en

es
s 

/ n
u

m
b

er
 o

f 
fa

u
lt

s 

S
o

u
rc

e 
M

o
d

el
in

g
 

T
ec

h
n

iq
u

e  

H
o

w
 b

u
ilt

 
1.

 Im
p

o
rt

 

co
u

p
lin

g
 2.

 S
iz

e 
3.

 n
o

rm
. 

co
h

es
io

n
 4.

 E
xp

o
rt

 

co
u

p
lin

g
 

5.
 In

h
. 

d
ep

th
 

ab
o

ve
 

6.
 In

h
. 

d
ep

th
 

b
el

o
w

 

7.
 In

h
. 

b
as

ed
 

co
u

p
lin

g
 8.

 In
h

. 

si
ze

 

T 
G

o
o

d
n

es
s 

o
f 

fi
t 

T
yp

e 
o

f 

C
V

 

P
re

d
ic

ti
ve

 

P
o

w
er

 

[E
B

G
R

99
] 

Lo
gi

st
ic

 

re
gr

es
si

on
 

si
ze

 m
ea

su
re

 

fo
rc

ed
 in

 m
od

el
, 

in
cl

ud
e 

de
si

gn
 

m
ea

su
re

s 
no

t 

co
nf

ou
nd

ed
 w

ith
 

si
ze

 

 
LO

C
 

 
C

B
O

 
 

 
A

C
M

IC
 

 
3 

R
2
= 

0.
36

6 
Le

av
e-

 

on
e-

ou
t 

A
re

a 
un

de
r 

R
O

C
: 0

.8
13

, 

se
ns

iti
vi

ty
: 0

.8
4,

 

sp
ec

ifi
ci

ty
 0

.7
8.

 

P
ro

po
rt

io
n 

co
rr

ec
t: 

0.
79

 

[E
M

M
01

] 
 

 
 

N
A

Im
p 

 
O

C
M

E
C

 
D

IT
 

 
 

 
3 

R
2
=0

.4
35

5 
Le

av
e-

 

on
e-

ou
t 

A
R

O
C

: 0
.8

7,
 

se
ns

iti
vi

ty
: 0

.8
1,

 

sp
ec

ifi
ci

ty
 0

.8
3 

 
 

 
 

 
 

 
 

 
 

 
 

 
B

et
w

ee
n-

 

sy
st

em
 

va
lid

at
io

n 
 A

R
O

C
: 0

.7
8,

 

P
ro

po
rt

io
n 

co
rr

ec
t: 

0.
77

 

[G
E

M
M

00
] 

 
 

O
C

M
IC

 
N

M
Im

p 
 

O
C

M
E

C
 

D
IT

, 

D
IT

2
 

 
 

 
5 

R
2
= 

0.
42

 
Le

av
e-

 

on
e-

ou
t 

A
R

O
C

: 0
.8

5 

[C
S

00
] 

O
LS

 
 

 
E

V
N

T
S

 
 

 
 

 
 

 
1 

ad
j. 

R
2 =

 8
7.

2%
 

 
 

 
 

 
 

E
V

N
T

S
 

 
 

IN
H

T
S

 
 

 
 

2 
ad

j. 
R

2 =
 8

9%
 

 
 

[B
W

D
P

00
] 

LR
 

fo
rw

ar
d 

st
ep

w
is

e 

he
ur

is
tic

 

 
N

M
, 

N
M

pu
b,

 

N
um

P
ar

 

 
 

 
 

 
 

3 
R

2
=0

.1
39

, 6
7%

 

co
m

pl
et

en
es

s,
 6

0%
 

co
rr

ec
tn

es
s 

 
 

 
 

 
N

IH
IC

P
, 

R
F

C
, 

R
F

C
1_

L 

 
 

F
M

M
E

C
 

N
O

P
 

N
M

I 

C
LD

 
 

 
7 

R
2

 =
 0

.5
3,

 9
4%

 

co
m

pl
et

en
es

s,
 8

1%
 

co
rr

ec
tn

es
s 

10
-c

ro
ss

 

va
lid

at
io

n 

92
%

 

co
m

pl
et

en
es

s,
 

78
%

 

co
rr

ec
tn

es
s.

 

 
 

 
O

M
M

IC
 

R
F

C
 

N
M

, N
M

A
 

N
um

P
ar

 

 
O

C
A

E
C

 

F
M

M
E

C
 

N
O

P
 

C
LD

 
 

 
9 

R
2
 =

 0
.5

6,
 9

0%
 

co
m

pl
et

en
es

s,
 7

9%
 

co
rr

ec
tn

es
s 

 
 

 
N

A
Im

p 

N
um

P
ar

 

 
 

 
 

 
 

2 
R

2
 =

 0
.1

6,
 6

8%
 

co
m

pl
et

en
es

s 
68

%
 

co
rr

ec
tn

es
s 

 
 

[B
W

L0
1]

 
LR

 
fo

rw
ar

d 
st

ep
w

is
e 

he
ur

is
tic

 

IC
P

_L
, 

N
IH

IC
P

 

O
C

M
IC

 

O
C

A
IC

 

IC
H

 
 

C
B

O
’ 

 
 

 
 

6 
R

2
 =

 0
.5

3,
 9

1%
 

co
rr

ec
tn

es
s,

 9
7%

 

co
m

pl
et

en
es

s 

10
-c

ro
ss

- 

va
l. 

 

co
rr

ec
tn

es
s 

an
d 

co
m

pl
et

en
es

s 

ab
ou

t 9
0%

 



 
29

S
o

u
rc

e 
M

o
d

el
in

g
 

T
ec

h
n

iq
u

e  

H
o

w
 b

u
ilt

 
1.

 Im
p

o
rt

 

co
u

p
lin

g
 2.

 S
iz

e 
3.

 n
o

rm
. 

co
h

es
io

n
 4.

 E
xp

o
rt

 

co
u

p
lin

g
 

5.
 In

h
. 

d
ep

th
 

ab
o

ve
 

6.
 In

h
. 

d
ep

th
 

b
el

o
w

 

7.
 In

h
. 

b
as

ed
 

co
u

p
lin

g
 8.

 In
h

. 

si
ze

 

T 
G

o
o

d
n

es
s 

o
f 

fi
t 

T
yp

e 
o

f 

C
V

 

P
re

d
ic

ti
ve

 

P
o

w
er

 

 
 

 
IC

P
_L

 

O
C

A
IC

 

N
A

Im
p,

 

N
um

pa
r 

IC
H

 

 
C

B
O

’ 
 

 
 

 
6 

R
2
 =

 0
.5

6,
 9

7%
 

co
m

pl
et

en
es

s,
 8

7%
 

co
rr

ec
tn

es
s 

 
 

[B
M

W
01

] 
LR

 
fo

rw
ar

d 
st

ep
w

is
e 

he
ur

is
tic

 

O
C

M
IC

 
 

 
O

C
M

E
C

 
 

 
 

N
IP

 
3 

 
10

-c
ro

ss
- 

va
l. 

 

74
%

 

co
rr

ec
tn

es
s,

 

62
%

 

co
m

pl
et

en
es

s 

 
 

 
 

 
 

 
 

 
 

 
 

 
B

et
w

ee
n-

 

sy
st

em
 

va
lid

at
io

n 

co
m

pl
et

en
es

s 

an
d 

co
rr

ec
tn

es
s 

ab
ou

t 6
0%

 

 
LR

 w
ith

 

M
A

R
S

 

 
O

C
M

IC
 

 
 

O
C

M
E

C
 

D
IT

 
 

 
 

3 
 

10
-c

ro
ss

- 

va
l. 

68
%

 

co
rr

ec
tn

es
s,

 

73
%

 

co
m

pl
et

en
es

s 

 
 

 
 

 
 

 
 

 
 

 
 

 
B

et
w

ee
n-

 

sy
st

em
 

va
lid

at
io

n 

co
m

pl
et

en
es

s 

an
d 

co
rr

ec
tn

es
s 

ab
ou

t 6
0%

 

 



 
30

 T
ab

le
 1

0:
 S

u
m

m
ar

y 
o

f 
m

u
lt

iv
ar

ia
te

 m
o

d
el

s 
fo

r 
ef

fo
rt

 

S
o

u
rc

e 
M

o
d

el
in

g
 

T
ec

h
n

iq
u

e,
 IV

 H
o

w
 b

u
ilt

 
1.

 Im
p

o
rt

 

co
u

p
lin

g
 2.

 S
iz

e 
3.

 n
o

rm
. 

co
h

es
io

n
 4.

 E
xp

o
rt

 

co
u

p
lin

g
 

5.
 In

h
. 

d
ep

th
 

ab
o

ve
 

6.
 In

h
. 

d
ep

th
 

b
el

o
w

 

7.
 In

h
. 

b
as

ed
 

co
u

p
lin

g
 8.

 In
h

. 

si
ze

 

T 
G

o
o

d
n

es
s 

o
f 

fi
t 

T
yp

e 
o

f 

cr
o

ss
-

va
lid

at
io

n
 

P
re

d
ic

ti
ve

 

P
o

w
er

 

[C
D

K
98

] 
O

LS
, 

P
ro

du
ct

iv
ity

 

st
ep

w
is

e 
he

ur
is

tic
 

 
LO

C
 

 
 

 
 

 
 

27
 a

dj
. R

2
 =

 7
5%

 
 

 

 
 

 
 

LO
C

, 

H
IL

C
O

M
 

 
H

IC
B

O
 

 
 

 
 

47
 a

dj
. R

2
 =

 8
2%

 
 

 

 
O

LS
, R

ew
or

k 

ef
fo

rt
 

 
 

H
IL

C
O

M
 

 
H

IC
B

O
 

 
 

 
 

37
 a

dj
. R

2
 =

 6
0%

 
 

 

 
O

LS
 D

es
ig

n 

ef
fo

rt
 

 
 

H
IL

C
O

M
 

 
H

IC
B

O
 

 
 

 
 

2 
ad

j. 
R

2
2 

=
 6

0%
 

 
 

[L
H

93
] 

O
LS

, #
lin

es
 

ad
de

d/
 

ch
an

ge
d/

 

re
m

ov
ed

 

a 
pr

io
ri 

se
le

ct
io

n  
of

 

va
ria

bl
es

 to
 b

e 

in
cl

ud
ed

 

M
P

C
 

R
F

C
 

D
A

C
 

W
M

C
 

N
O

M
 

S
iz

e1
 

S
iz

e2
 

LC
O

M
 

 
 

D
IT

 
N

O
C

 
 

 
10

 a
dj

. R
2
 

87
.7

3%
(U

IM
S

),
 

85
.5

0%
 (

Q
U

E
S

) 

 
 

 
 

 
M

P
C

 

R
F

C
 

D
A

C
 

W
M

C
 

N
O

M
 

LC
O

M
 

 
 

D
IT

 
N

O
C

 
 

 
8 

ad
j. 

R
2
 8

7.
71

%
 

(U
IM

S
),

 8
5.

33
%

 

(Q
U

E
S

) 

B
et

w
ee

n-
 

sy
st

em
 

va
lid

at
io

n 

C
or

re
la

tio
n:

 

pr
ed

ic
te

d 
va

lu
es

 

of
 U

IM
S

 m
od

el
 

ap
pl

ie
d 

to
 

Q
U

E
S

 w
ith

 

ac
tu

al
 v

al
ue

s 
in

 

Q
U

E
S

: r
=

0.
67

8 

(0
.6

50
 th

e 
ot

he
r 

w
ay

 r
ou

nd
).

 

 
 

 
 

S
iz

e1
 

S
iz

e2
 

 
 

 
 

 
 

2 
ad

j. 
R

2
 6

4.
29

%
 

(U
IM

S
),

 6
1.

72
%

 

(Q
U

E
S

) 

 
 

[L
H

K
S

95
] 

O
LS

, #
lin

es
 

ad
de

d/
 

ch
an

ge
d/

 

re
m

ov
ed

 

a 
pr

io
ri 

se
le

ct
io

n  
of

 

va
ria

bl
es

 to
 b

e 

in
cl

ud
ed

 

R
F

C
 

D
A

C
 

N
O

M
 

LC
O

M
 

 
 

D
IT

 
N

O
C

 
 

 
5 

ad
j. 

R
2
 7

7%
 (

U
IM

S
) 

67
%

 (
Q

U
E

S
).

 

B
et

w
ee

n-
 

sy
st

em
 

va
lid

at
io

n 

U
IM

S
 m

od
el

 to
 

ap
pl

ie
d 

to
 

Q
U

E
S

: r
=

0.
44

, 

ot
he

r 
w

ay
 r

ou
nd

 

r=
0.

49
 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

7 
 

T
he

 m
od

el
 in

cl
ud

es
 a

n 
ad

di
tio

na
l d

um
m

y 
va

ria
bl

e 
in

di
ca

tin
g 

w
he

th
er

 a
 p

ar
tic

ul
ar

 d
ev

el
op

er
 w

or
ke

d 
on

 a
 g

iv
en

 c
la

ss
. 



 
31

S
o

u
rc

e 
M

o
d

el
in

g
 

T
ec

h
n

iq
u

e,
 IV

 H
o

w
 b

u
ilt

 
1.

 Im
p

o
rt

 

co
u

p
lin

g
 2.

 S
iz

e 
3.

 n
o

rm
. 

co
h

es
io

n
 4.

 E
xp

o
rt

 

co
u

p
lin

g
 

5.
 In

h
. 

d
ep

th
 

ab
o

ve
 

6.
 In

h
. 

d
ep

th
 

b
el

o
w

 

7.
 In

h
. 

b
as

ed
 

co
u

p
lin

g
 8.

 In
h

. 

si
ze

 

T 
G

o
o

d
n

es
s 

o
f 

fi
t 

T
yp

e 
o

f 

cr
o

ss
-

va
lid

at
io

n
 

P
re

d
ic

ti
ve

 

P
o

w
er

 

[B
W

01
] 

P
oi

ss
on

 

R
eg

re
ss

io
n 

(P
R

) 

fo
rw

ar
d 

st
ep

w
is

e 

he
ur

is
tic

 

 
N

A
Im

p,
 

N
M

Im
p,

 

N
um

P
ar

 

 
 

 
 

 
N

A
 

4 
m

ea
n 

M
R

E
 

(m
M

R
E

) 
= 

1.
71

 

10
-c

ro
ss

 

va
lid

at
io

n 

m
M

R
E

 =
 1

.7
1 

 
hy

br
id

 P
R

 &
 

C
A

R
T

 

 
 

N
A

Im
p,

 

N
M

Im
p,

 

N
um

P
ar

 

 
 

 
 

 
N

A
 

N
M

In
h 

78
 m

M
R

E
 =

 0
.7

2 
10

-c
ro

ss
 

va
lid

at
io

n 

m
M

R
E

 =
 0

.7
8 

 
P

R
 

 
O

C
M

IC
 

M
P

C
, 

IC
P

 

N
A

IM
P

 
 

D
M

M
E

C
 

 
 

A
C

M
IC

 

IH
-I

C
P

 

 
7 

m
M

R
E

 =
 1

.5
 

10
-c

ro
ss

 

va
lid

at
io

n 

m
M

R
E

 =
 1

.5
5 

 
hy

br
id

 P
R

 &
 

C
A

R
T

 

 
M

P
C

, 

O
C

M
IC

, 

IC
P

 

N
A

Im
p,

 

N
M

Im
p 

 
P

IM
_E

C
 

 
 

A
C

M
IC

, 

IH
-I

C
P

 

N
A

 

N
M

In
h 

10
 m

M
R

E
 =

 0
.6

9 
10

-c
ro

ss
 

va
lid

at
io

n 

m
M

R
E

 =
 0

.7
7 

 
P

R
 

 
O

C
IM

C
 

LC
O

M
2,

 

LC
O

M
3,

 

IC
H

, 

N
um

P
ar

 

C
O

H
, 

LC
C

 

 
 

 
A

C
M

IC
 

 
8 

m
M

R
E

 =
 0

.9
7 

10
-c

ro
ss

 

va
lid

at
io

n 

m
M

R
E

 =
 1

.0
1 

 
hy

br
id

 P
R

 &
 

C
A

R
T

 

 
 

N
um

P
ar

 

N
M

Im
p,

 

LC
O

M
1,

 

LC
O

M
2 

LC
C

 
P

IM
_E

C
 

 
 

A
C

M
IC

 
N

M
In

h 
8 

m
M

R
E

 =
 0

.7
4 

10
-c

ro
ss

 

va
lid

at
io

n 

m
M

R
E

 =
 0

.8
5 

    
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

8 
T

he
 C

A
R

T
 m

od
el

s 
in

cl
ud

e 
du

m
m

y 
va

ria
bl

es
 r

ep
re

se
nt

in
g 

le
af

 n
od

es
 f

ro
m

 t
he

 r
eg

re
ss

io
n 

tr
ee

 (
cf

. 
S

ec
tio

n3
.4

.2
).

 T
he

 m
ea

su
re

s 
lis

te
d 

he
re

 i
nc

lu
de

 t
ho

se
 m

ea
su

re
s 

th
at

 c
on

tr
ib

ut
e 

to
 t

he
 d

ef
in

iti
on

 o
f 

at
 l

ea
st

 o
ne

 i
nc

lu
de

d 
du

m
m

y 
va

ria
bl

e.
 B

ec
au

se
 th

er
e 

is
 n

o 
1:

1 
m

ap
pi

ng
, t

he
 n

um
be

r 
of

 m
ea

su
re

s 
lis

te
d 

di
ffe

rs
 fr

om
 th

e 
in

di
ca

te
d 

nu
m

be
r 

of
 c

ov
ar

ia
te

s 
in

 th
e 

m
od

el
. 



 32

The tables contain 13 fault-proneness models, and 14 effort models. From the tables, we can draw a number of 
observations: 

Design measurement dimensions represented in the models 

From the 13 fault-proneness models, size measures are represented in 10 models, export coupling in 9, import 
coupling in 7, depth of class in 6 models. The other inheritance dimensions are represented once or twice, normalized 
cohesion not at all. 

For the 14 effort models, size is a contributor to all of them, import coupling and export coupling are represented in 6 
models each, inheritance-based size and import coupling in 4 models each, inheritance depth above/below class in 3 
models each, normalized cohesion in two. 

It should be noted that for the above models, authors typically have investigated only a subset of measures in 
which some dimensions were not represented at all, or were deliberately left out (e.g., when building models 
based on size measures only). In those instances, the fact that a given dimension is not included in the model 
does not imply that it is not useful. That notwithstanding, the results seem to indicate that size, import, and export 
coupling appear to be the dimensions mostly likely to affect the DV and should be always be considered when 
building models. Dimensions concerning inheritance sometimes play a role (especially with the effort models) 
and are worth to be tried out, whereas normalized cohesion measures appear not to be effective. 

Goodness of fit achieved by fault-proneness models 

The LR fault-proneness models typically achieve R-squared values from 0.42 to 0.56, which is fairly high (unlike the 
R- squared known from OLS, the R-squared for maximum likelihood estimation techniques such as LR [HL89] seldom 
approaches one; from our experience, values above 0.5 usually indicate very good fit). The high goodness of fit is 
also visible in correctness and completeness values, which are typically well above 80%. Given that these models 
stem from different environments (wrt. overall system/project size, application domain, programming languages, 
developers, etc), these results suggest highly accurate fault-proneness models based on design measures can likely 
be built in most development environments. 

Impact of size. In [BWPD00] and [BWL01], models based on size measures only and models based on design 
measures were assessed, to see if the latter help to better predict fault-proneness over what is explained by size 
alone. This assumption is confirmed, as the size-only models had a significantly lower fit (R-squared<0.16, 
completeness and correctness below 70%) than models including design measures. 

Goodness of fit achieved by effort models 

The OLS effort models aimed at predicting effort/code churn for individual classes achieve R-squared values between 
60%-87% percent. Though R-squared values approaching 90% usually indicate a good model fit, it is difficult to 
assess from this information to which degree reliable class level effort estimates can be made - absolute and relative 
errors are more transparent measures of prediction error in the context of effort estimation. In [BW01], goodness of fit 
is expressed, amongst others, in terms of the mean MRE, which ranges from 0.7 to 1.7. In other words, on average 
the predicted effort is 70% to 170% off the actual effort. As such, these models are not suitable to predict 
development effort for individual classes. It is shown, however, that when adding up estimates for class level efforts to 
the system level, reliable system effort estimates with MREs between 10-30% can be achieved. Also, the hybrid 
regression and CART models (see Section 3.4.2) have considerably lower MREs than the regular models, indicating 
that this approach to capture non-linear and local trends in data can in deed help build better models. 

Impact of size. Models based on size measures only, and size and design measures, were built in [LH93] and 
[BW01]. In [LH93], the size- only models showed a significantly lower fit than design models (R- squared 62-65% vs. 
85%-87%), indicating that design measures carry additional information related to effort not contained by size 
measures. While this difference is statistically significant, it is not clear if it is also of practical significance. Similar 
findings were made for the non-hybrid models in [BW01], where adding including design measures to the models 
decreased mMREs somewhat. For the hybrid models, however, inclusion of design measures did not help to improve 
the goodness of fit.  



 33

Results from cross-validation 

Where conducted, the results from cross-validation (Section 3.5.1) show a promising picture. In most cases, the 
performance of the models in cross-validation has not dropped much compared to the goodness of fit achieved 
by the models.  

For the effort models in [BW01], the change in mMRE compared to goodness of fit is statistically not significant. 
In [LH93] and [LHKS95], the authors calculate a correlation coefficient of actual effort vs. predicted effort 
(prediction from a model built from another system). Depending on the model, they find correlation coefficients r 
between 0.44 and 0.67, significantly different from 0). Here, it is difficult to assess if such a prediction can still be 
practically useful, as the figures provided have no meaningful interpretation in an application context. The 
absolute/relative errors of the prediction could provide more insight here. 

The fault-proneness models typically achieve completeness and correctness levels (or sensitivity/specificity 
levels) of about 80% and above in cross-validation. Recently, cost-benefit models have been proposed in 
[GEMM00] and [BMW01], investigating whether it is economical viable to use models of such accuracy, for 
instance, to focus inspections efforts on classes likely to contain faults: 

• The cost-benefit model in [GEMM00] defines the savings of using a prediction model as the proportion 
of costs due to post-release faults that are saved due to inspection on classes predicted fault- prone (as 
opposed to performing no inspections at all). This model requires assumptions about the relative cost of 
post-release faults and class inspections. 

• The cost-benefit model in [BMW01] and summarized in Section 3.5.2 expresses the benefit of using a 
prediction model to select classes for inspection over another class selection strategy which is used as 
comparison baseline (e.g., ranking based on class size). This model requires no assumptions about the 
relative cost of post-release faults and class inspections, thus making it practical to use. It assumes that 
you should compare the benefits of decision making (e.g., select class to inspect) with the predictive 
model with respect to the same decisions without the model, following a procedure already available. To 
make the comparison meaningful in terms of benefits, the cost (e.g., the cumulative size of classes 
inspected) should be held constant for both the procedure using the model and the baseline procedure.  

In Table 9 and Table 10, a number of published models were not considered due to some methodological flaws 
in building these models. Including them would bias the results: 

• The models in [AM96] based on 8 observations and 7 covariates suffer from overfitting (as visible in high 
R-squared>99.9%). 

• The models in [BM99] and [NQ98] contain covariates with p-values above 0.5. Such covariates can be 
removed from the model without significant loss of fit.  

• In [CL93], a full model with all candidate measures is fitted. From this model, not significant covariates 
were removed, and predicted values were calculated from the remaining significant covariates, but 
retaining the regression coefficients from the full model. Of course, the reduced model should have been 
refitted to obtain unbiased predicted values, or a proper backward elimination procedure could have 
been used. 

4.2 Controlled Experiments 

In the following, we briefly report on the qualitative results established in controlled experiments. 

• In [BBDD97], students answered comprehension questions and performed change impact analysis on 
functionally equivalent systems with differing adherence to design principles (including low coupling, high 
cohesion, and simple, small classes). The time required to perform the tasks and the correctness of the 
students’ performance were measured. The OO system displaying good object-oriented design 
principles was shown to be better understandable and faster to modify than the version violating the 
design principles. A refined experiment in [BBD97] confirmed these results. Note however that no 
statement can be made whether any of the design principles contributed more or less to the differences 
in understandability/maintainability. 

• Though not a controlled experiment in the strict sense, in [Bar98] two developers were asked to 
implement a certain piece of software. One was instructed to write code for a specific context and of 
poor reusability, whereas the other to write the code in the most reusable manner possible. A set of 
design measures was applied to both resulting systems. The “reusable” system showed lower coupling 
and higher cohesion (as measured by CBO and LCOM) as the “poor reusability” one. Also, the 



 34

“reusable” system made no use of inheritance, while the “poor reusability” one did. Note however that 
the sample systems were too small to allow for any statistical testing of significant differences. 

The remaining studies all focus on the impact of inheritance on understandability and maintainability. 

• In [LC92], students answered comprehension questions and performed debugging and modification 
tasks on functionally equivalent systems with deep and shallow inheritance hierarchies. The time 
required to perform the tasks and the correctness and completeness of the students’ performance were 
measured. The answers to comprehension questions showed no difference in understandability between 
the deep and shallow systems. The debugging tasks were more easily to identify and to correct in the 
shallow systems, while taking the same time as the deep versions. Modification tasks took shorter for 
the deep versions, but were carried with lower correctness than on the shallow versions. 

• In [WDMR99], students performed modifications on three pairs of functionally equivalent systems. The 
time they required for the modification was measured. In two experimental runs, systems with 3 levels of 
inheritance were found to be better maintainable than the equivalent flat versions. In a third experimental 
using a larger system no difference was found between a system using 5 levels of inheritance and an 
equivalent flat version. 

•  In [HCN00], students performed modifications on two pairs of functionally equivalent systems that differ 
in the use of inheritance (no inheritance, three/five levels of inheritance). The correctness and 
completeness of their performance was observed, and also the perceived subjective understandability of 
the systems was measured. Results showed that flat systems were easier to modify than the versions 
with three or five levels of inheritance. For one pair of systems, the flat system was easier to understand 
than the inheritance version and no difference was found for the other pair of systems. 

It is interesting to observe that the results from controlled experiments mirror well the findings from the 
correlational studies. Coupling, cohesion, and size appear to consistently affect system quality. For inheritance, 
inconsistent results are found: use of inheritance can have a beneficial, detrimental, or no effects at all on 
system quality. Possible explanations were already discussed in Section 4.1.1. 

5 Conclusions 

Despite a large number of empirical studies and articles, a lot of work remains to be done regarding the 
construction and application of useful, measurement-based quality models for object-oriented systems.  

The difficulty related to developing an empirical body of knowledge stems from: 

• A large number of proposed measures, many of them being similar. 

• A large number of external quality attributes of interest (all the “ilities” of software development). 

• The scarcity of reliable, complete data sets. 

• The difficulty to integrate quality prediction models in realistic decision processes where their benefits 
can be assessed. 

Despite such difficulties, reported studies allow us to draw a number of important conclusions that are discussed 
below.  

5.1 Interrelationship between design measures 

Many of the coupling, cohesion, and inheritance measures used in this study appear to capture similar 
dimensions in the data. In fact, the number of dimensions actually captured by the measures is much lower than 
the number of measures itself. Results from principal component analysis on numerous datasets showed that 
the measures listed in the Appendix can safely be reduced to a smaller set of about 15 measures, without losing 
important (i.e., potentially quality-related) design information. This simply reflects the fact that many of the 
measures proposed in the literature are based on comparable ideas and hypotheses, and are therefore 
somewhat redundant. 



 35

 

5.2 Indicators of fault-proneness 

Measures of size, import coupling, and export coupling appear to be useful predictors of fault-proneness. 

• If one intends to build quality models of OO designs, coupling will very likely be an important structural 
dimension to consider. More specifically, a strong emphasis should be put on method invocation import 
coupling since it has shown to be a strong, stable indicator of fault- proneness. We also recommend that 
the following aspects be measured separately since they capture distinct dimensions in our data sets: 
import versus export coupling, coupling to library classes versus application classes, method invocation 
versus aggregation coupling. 

• As far as cohesion is concerned and measured today, it is very likely not a very good fault-proneness 
indicator. This is likely to reflect two facts: (1) the weak understanding we currently have of what this 
attribute is supposed to capture, (2) the difficulty to measure such a concept through static analysis only. 
One illustration of this problem is that two distinct dimensions are captured by existing cohesion 
measures: normalized versus non-normalized cohesion measures. As opposed to the various coupling 
dimensions, these do not look like components of a vector characterizing class cohesion, but rather as 
two fundamentally different ways of looking at cohesion. 

• Inheritance measures appear not to be consistent indicators of class fault-proneness. Their significance 
as indicators strongly depends on the experience of the system developers and the inheritance strategy 
in use on the project. 

• Size measures are, as expected, consistently good indicators of fault- proneness, and can be 
considered with fault-proneness models. However, we have observed that the above-mentioned 
dimensions of coupling and inheritance, when combined with size, help explain fault- proneness further 
than size alone; models based on all three types of measures clearly outperform models based on size 
only. 

5.3 Indicators of effort 

Size seems to be the main effort driver that explains most of the effort variance. While the more sophisticated 
coupling and inheritance measures also have a univariate relationship to effort, they do not bring substantial 
gains in terms of goodness of fit and cost estimation accuracy. 

5.4 Predictive power of models 

Results concerning the predictive power of fault-proneness / effort models are encouraging. When predicting 
fault-prone classes, using all important fault-proneness indicators mentioned above, the best models have 
consistently obtained a percentage of correct classifications of about 80% and find more than 80% of faults. 
Overall, the results suggest that design measurement-based models for fault-proneness predictions of classes 
may be very effective instruments for quality evaluation and control of OO systems. 

From the results presented in studies predicting development effort, we may conclude that there is a reasonable 
chance that useful cost estimation models can be built during the analysis and design of object-oriented 
systems. System effort prediction MREs below 30%, which is an acceptable level of accuracy for cost estimation 
models [BEMS99], seem realistic to achieve.  

5.5 Cross-system application 

An important question concerning the usefulness of design measurement-based prediction models is whether 
they can be viable decision making tools when applied from one object-oriented system to the other, in a given 
environment. This question has received very little attention in existing empirical studies. The most detailed 
investigation to date is reported in [BMW01], where the authors applied a fault-proneness model built on one 
system to another system, developed with a nearly identical development team (a different project manager), 
using a similar technology (OO analysis and design and Java) but different design strategies and coding 
standards. We believe that the context of our study represents realistic conditions that are often encountered in 
practice: change in personnel, learning effects, evolution of technology. 

Our results suggest that applying the models across systems is far from straightforward. Even though the 
systems stem from the same development environment, the distributions of measures change and, more 
importantly, system factors (e.g., experience, design method) affect the applicability of fault detection predicted 
probabilities. However, we have shown the prediction model built on a system can be used to rank classes of a 



 36

second system (within the same environment) according to their predicted fault-proneness. When used in this 
manner, the model can in fact be helpful at focusing verification effort on faulty classes. Though predicted defect 
detection probabilities are clearly not realistic based on actual fault data, the fault-proneness class ranking is 
accurate. The model performs clearly better than chance and also outperforms a simple model based on class 
size, e.g., number of methods.  

It can be argued that, in a more homogeneous environment, this effect might not be as strongly present as in the 
current study. But we doubt whether such environments exist or are in any case representative. It is likely, 
however, that the more stable the development practices and the better trained the developers, the more stable 
the fault-proneness models. For example, in [EMM01] a fault-proneness model built from one version of a 
system was applied to later versions of the same system, and no shift in predicted probabilities was observed. 

5.6 Cost benefit model 

To assess the economical viability of fault-proneness models when applied across systems, we proposed a 
specific cost-benefit model. This model is tailored to a number of specific assumptions regarding the use of the 
model, but its underlying principles are general and can be reused. The benefit of a fault-proneness model is 
expressed as a function of a number of parameters: cost of a fault that slipped inspection, defect detection 
effectiveness during inspections. Continuing the system example we used in [BMW01], with a test system 
containing 27 faults, the benefit of using a prediction model to select classes for inspection over a simple size-
based class selection heuristic showed to be as high as 17.6 fault-cost-units (1 fault-cost-unit = average cost of a 
fault not detected during inspection), thus demonstrating the usefulness of using measurement-based, fault-
proneness models in the environment under study. 

5.7 Advanced data analysis techniques 

Novel, exploratory analysis techniques (Multivariate Adaptive Regression Splines: MARS, and hybrid regression 
models with regression trees) have been applied to construct of fault-proneness and effort models. Because we 
know little about what functional form to expect, such exploratory techniques that help finding optimal model 
specifications may be very useful. 

Initial results support this premise and suggest that the fault-proneness models generated by MARS outperform 
a logistic regression model where the relationship between the logit and the independent variables is linear (log-
linear model).  

The combination of Poisson regression and regression trees has helped to improve significantly effort 
predictions, especially predictions based on size measures only that can be performed early on during the design 
stages. This can be explained by the fact that regression trees tend to capture complementary structures in the 
data since they help define new predictors capturing interactions between the original predictors. Though they 
will not systematically help, such hybrid models are worth trying.  

5.8 Exploitation of results 

There are a number of typical applications where results from the empirical studies we summarized here can be 
used to refine decision-making: 

• Building quality benchmarks to assess OO software products that are newly developed or under 
maintenance, e.g., in the context of large- scale software acquisition and outsourcing, but also in-house 
development. For example, such experiences are reported in [MC96] where the code of acquired 
products is systematically measured to identify systems or subsystems that strongly depart from 
previously established measurement benchmarks. Such benchmarks can be built based on existing 
operational software, which has shown to be of good quality. New software can then be analyzed by 
comparing, for example, import coupling class distributions with the established benchmark. Any system 
part that would show a strong departure from the benchmark distribution could, for example, be further 
inspected to investigate the cause of the deviation. If no acceptable justification can be found then the 
acquisition manager may decide to require some corrective actions before the final delivery or for future 
releases of the software. This is particularly important when systems will be maintained over a long 
period of time and new versions produced on a regular basis.  

• Design measurement can be combined with more qualitative analyses of software systems to make the 
results of a qualitative analysis more objective. For example, [BW01b] describes a study aimed at 
assessing the modifiability and reusability of a software system. To this end, a set of change scenarios 



 37

that the system is likely to undergo in the future was identified, and the impact of change to the system 
classes assessed for each scenario. The structural properties (size, coupling) of the system classes, 
which should be indicative of how difficult these changes are to implement, were also measured. The 
design measures and the scenario evaluation were then integrated by defining a Change Difficulty Index 
(CDI), which incorporates both the extent of changes to classes, and their associated coupling, 
complexity, and size. A comparison of the CDIs at the class level then provided insight into the 
maintainability and reusability of software systems. 
When static measurement is performed in isolation, large/high coupling classes are generally 
considered difficult to maintain or reuse. With the scenario evaluation, we can put this into context. A 
class with high coupling may cause no problems if it is unlikely to be changed or reused in the future. On 
the other hand, for a class that is likely to undergo frequent changes, this is not a problem if the class is 
well designed for it (low size/coupling). Here, the two approaches were used together so that they can 
address each other’s limitations. 

In both of the above examples, it is important that the measures used are carefully selected as they may affect 
the results and decisions. One important consideration is that these measures have to be consistent indicators 
of software design problems, and their relationships to external quality attributes, e.g., fault-proneness, should be 
clearly demonstrated and stable across environments. In the current stage of knowledge, certain measures of 
import coupling and size appear to be particularly well suited for the abovementioned purposes. 

The overall results of the studies tell us that the validity of fault-proneness models may be very context-sensitive. 
We therefore recommend that fault-proneness models be built locally, in the environment where one intends to 
use them, and their stability has to be assessed and analyzed across systems in that environment. Existing 
measurement tools do not support the use of design measures for this particular purpose. Based on the results 
summarized here, practitioners (quality assurance teams) can verify if the set of measures provided by their 
measurement tools covers all dimensions of OO designs we identified as important quality indicators. Our data 
analysis procedure then provides practitioners with detailed guidance on how they can (1) reduce the set of 
measures provided by their measurement tools to a minimal, non-redundant set, (2) construct prediction models 
from these measures, (3) use these prediction models for decision making during projects, and (4) evaluate the 
cost-effectiveness of prediction model usage. 

5.9 Future research directions 

We have identified a number of open questions that are crucial to the betterment and wider acceptance of 
measurement-based OO design quality models: 

• Most of the design measurement reported is actually based on measurement of source code. Early 
analysis and design artifacts are, by definition, not complete and only represent early models of the 
actual system to be developed. Using models on such representations inevitably introduces a 
measurement error in terms of structural properties such as coupling or inheritance. The use of 
predictive models based on early artifacts and their capability to predict the quality of the final system still 
remains to be investigated.  

• Future research needs to focus on collecting larger datasets, involving large numbers of systems from a 
same environment. In order to make the research on fault-prone models of practical relevance, it is 
crucial that they be usable from project to project. Their applicability depends on their capability to 
predict accurately and precisely (fine grained predictions) quality attributes (e.g., class fault-proneness) 
in new systems, based on the development experience accumulated on past systems. Though many 
studies report the construction of models, few report their actual application in realistic settings. Our 
understanding has now reached a sufficient level so that such studies can be undertaken. 

• Cost-benefit analyses of fault-proneness models used either a simple class selection heuristic to focus 
verification based on class size as a comparison benchmark or, even worse, compared against the case 
where no verification is performed at all. Both solutions are not fully satisfactory as experts may very well 
be accurate at predicting quality attributes such as fault- proneness. But little is known on how prediction 
models compare with experts’ predictions. Furthermore, there might be a way to combine expert opinion 
with OO design quality models to obtain more reliable statements about system quality. 

As it may be expected, more studies are needed to reach a mature body of knowledge and experience. 
However, though this is a prerequisite it is not enough. Empirical studies in software engineering need to be 
better performed, analyzed, and reported. To this purpose, standard procedures may be reused and adapted 
from other empirical fields, such as medicine, and should be used to evaluate empirical articles. We have 



 38

provided in this chapter a set of procedures that may be used as a starting point for conducting higher quality 
research and obtaining more fruitful results when investigating measurement-based quality models. 

6 Appendix 

The following tables describe the coupling, cohesion, inheritance, and size measures mentioned in this chapter. 
We list the acronym used for each measure, informal definitions of the measures, and literature references 
where the measures originally have been proposed. The informal natural language definitions of the measures 
should give the reader a quick insight into the measures. However, such definitions tend to be ambiguous. 
Formal definitions for most of the measures using a uniform and unambiguous formalism are provided in 
[BDW99][BDW98], where we also perform a systematic comparison of these measures, and analyze their 
mathematical properties. 

Table 11: Coupling measures 

Name Definition Source 

CBO  Coupling between object classes. According to the definition of this measure, a class is coupled to another, if 

methods of one class use methods or attributes of the other, or vice versa. CBO is then defined as the number 

of other classes to which a class is coupled. This includes inheritance-based coupling (coupling between 

classes related via inheritance). 

[CK94] 

CBO’ Same as CBO, except that inheritance-based coupling is not counted. [CK91] 

RFC  Response set for class. The response set of a class consists of the set M of methods of the class, and the set 

of methods directly or indirectly invoked by methods in M. In other words, the response set is the set of 

methods that can potentially be executed in response to a message received? by an object of that class. RFC 

is the number of methods in the response set of the class. 

[CK91] 

RFC-1 Same as RFC, except that methods indirectly invoked by methods in M are not included in the response set. [CK94] 

MPC  Message passing coupling. The number of method invocations in a class. [LH93] 

DAC  Data abstraction coupling. The number of attributes in a class that have another class as their type. [LH93] 

DAC’ The number of different classes that are used as types of attributes in a class. [LH93] 

ICP  Information-flow-based coupling. The number of method invocations in a class, weighted by the number of 

parameters of the invoked methods. 

[LLWW95] 

IH-ICP  As ICP, but counts invocations of methods of ancestors of classes (i.e., inheritance- based coupling) only. [LLWW95] 

NIH-ICP As ICP, but counts invocations to classes not related through inheritance. [LLWW95] 

IFCAIC 

ACAIC 

OCAIC 

FCAEC 

DCAEC 

OCAEC 

IFCMIC 

ACMIC 

OCMIC 

FCMEC 

DCMEC 

OCMEC 

IFMMIC 

AMMIC 

OMMIC 

FMMEC 

DMMEC 

OMMEC 

These coupling measures are counts of interactions between classes. The measures distinguish the 

relationship between classes (friendship, inheritance, none), different types of interactions, and the locus of 

impact of the interaction. 

The acronyms for the measures indicates what interactions are counted: 

The first or first two letters indicate the relationship (A: coupling to ancestor classes, D: Descendents, F: 

Friend classes, IF: Inverse Friends (classes that declare a given class c as their friend), O: Others, i.e., none 

of the other relationships). 

The next two letters indicate the type of interaction: 

CA: There is a Class-Attribute interaction between classes c and d, if c has an attribute of type d. 

CM: There is a Class-Method interaction between classes c and d, if class c has a method with a parameter of 

type class d. 

MM: There is a Method-Method interaction between classes c and d, if c invokes a method of d, or if a method 

of class d is passed as parameter (function pointer) to a method of class c. 

The last two letters indicate the locus of impact: 

IC: Import coupling, the measure counts for a class c all interactions where c is using another class. 

EC: Export coupling: count interactions where class d is the used class. 

[BDM97] 

IC Inheritance Coupling: Number of parent classes to which a class is coupled. [TKC99] 

CBM Coupling between methods: Number of function dependency relationships between inherited and 

new/redefined methods (should be similar or the same as AMMIC). 

[TKC99] 

CC Class coupling - number of method couplings, i.e., variable references and/or method calls [RL92] 

AMC Average method coupling - CC divided by number of methods in the class. [RL92] 



 39

Name Definition Source 

CBO  Coupling between object classes. According to the definition of this measure, a class is coupled to another, if 

methods of one class use methods or attributes of the other, or vice versa. CBO is then defined as the number 

of other classes to which a class is coupled. This includes inheritance-based coupling (coupling between 

classes related via inheritance). 

[CK94] 

NAS Number of associations - count of the number of association lines emanating from a class in an OMT diagram. [HCN98] 

COF Coupling Factor - percentage of pairs of classes that are coupled. [AM96] 

CDM Coupling Dependency Metric. Sum of 1) referential dependency (extent to which a program relies on its 

declaration dependencies remaining unchanged), 2) structural dependency (extent to which a program relies 

on its internal organization remaining unchanged, 3) data integrity dependency (vulnerability of data elements 

in one module to change by other module) 

[BS98] 

Fan-In Count of modules (classes) that call a given class, plus the number of global data elements [BS98] 

Fan-Out Count of modules (classes) called by a given module plus the number of global data elements altered by the 

module (class) 

[BS98] 

 

Table 12: Cohesion measures 

Name Definition Source 

LCOM1 Lack of cohesion in methods. The number of pairs of methods in the class using no attribute in common. [CK91] 

LCOM2 LCOM2 is the number of pairs of methods in the class using no attributes in common, minus the number of 

pairs of methods that do. If this difference is negative, however, LCOM2 is set to zero. 

[CK94] 

LCOM3 Consider an undirected graph G, where the vertices are the methods of a class, and there is an edge between 

two vertices if the corresponding methods use at least an attribute in common. LCOM3 is defined as the 

number of connected components of G. 

[HM95] 

LCOM4 Like LCOM3, where graph G additionally has an edge between vertices representing methods m and n, if m 

invokes n or vice versa. 

[HM95]  

Co Let V be the number of vertices of graph G from measure LCOM4, and E the number of its edges. Then 

))2)(1/(())1((2 −−−−= VVVECo . 

[HM95] 

LCOM5 Consider a set of methods {Mi} (i=1,...,m) accessing a set of attributes {Aj} (j=1,...,a). Let µ(Aj) be the number 

of methods which reference attribute Aj. Then  

 

)1/()))(((
1

5
1

mmA
a

LCOM
a

j j −−= ∑ =
µ . 

 

[Hen96] 

Coh  

 A variation on LCOM5: )/())((
1

amACoh
a

j j ⋅= ∑ =
µ  

 

[BDW98] 

TCC Tight class cohesion. Besides methods using attributes directly (by referencing them), this measure considers 

attributes indirectly used by a method. Method m uses attribute a indirectly, if m directly or indirectly invokes a 

method which directly uses attribute a. Two methods are called connected, if they directly or indirectly use 

common attributes. TCC is defined as the percentage of pairs of public methods of the class that are 

connected, i.e., pairs of methods which directly or indirectly use common attributes.  

[BK95] 

LCC  Loose class cohesion. Same as TCC, except that this measure also considers pairs of indirectly connected 

methods. If there are methods m1,..., mn, such that mi and mi+1 are connected for i=1,...,n-1, then m1 and mn 

are indirectly connected. Measure LCC is the percentage of pairs of public methods of the class which are 

directly or indirectly connected. 

[BK95] 

ICH  Information-flow-based cohesion. ICH for a method is defined as the number of invocations of other methods 

of the same class, weighted by the number of parameters of the invoked method (cf. coupling measure ICP 

above). The ICH of a class is the sum of the ICH values of its methods. 

[LLWW95] 

MHF MHF - method hiding factor, percentage of methods that have external visibility in the system (are not private 

to a class). 

[AM96] 

AHF Attribute hiding factor, percentage of methods that have external visibility in the system. [AM96] 

 



 40

 

Table 13: Inheritance Measures 

Name Definition Source 

DIT Depth of inheritance Tree. The DIT of a class is the length of the longest path from the class to the root in the 

inheritance hierarchy. 

[CK91] 

AID Average inheritance depth of a class. AID of a class without any ancestors is zero. For all other classes, AID 

of a class is the average AID of its parent classes, increased by one. 

[Hen96] 

CLD Class-to-leaf depth. CLD of a class is the maximum number of levels in the hierarchy that are below the class. [TSM95] 

NOC Number of children. The number of classes that directly inherit from a given class. [CK91], 

[CK94] 

NOP Number of parents. The number of classes that a given class directly inherits from. [LC94], 

[LK94] 

NOD Number of descendents. The number of classes that directly or indirectly inherit from a class (i.e., its children, 

‘grand-children’, and so on) 

[LC94], 

[TSM95] 

NOA Number of ancestors. The number of classes that a given class directly or indirectly inherits from. [TSM95] 

NMO Number of methods overridden. The number of methods in a class that override a method inherited from an 

ancestor class. 

[LK94] 

NMINH Number of methods inherited. The number of methods in a class that the class inherits from its ancestors and 

does not override. 

[LK94] 

NMA Number of methods added. The number of new methods in a class, not inherited, not overriding. [LK94] 

SIX Specialization index. SIX is NMO * DIT / (NMO+NMA+NMINH) [LK94] 

MIF Method inheritance factor, percentage of methods that are inherited in the system (sum of all inherited 

methods in all classes, divided by sum of inherited and non-inherited methods in all classes) 

[AM96] 

AIF Attribute inheritance factor, equivalent to MIF, for attributes [AM96] 

POF Polymorphism Factor, percentage of possible opportunities for method overriding that are used. [AM96] 

INHTS Dummy variable indicating if a class partakes in an inheritance relationship [CS00] 

SPA Static polymorphism in ancestors [BM99] 

DPA Dynamic polymorphism in ancestors [BM99] 

SPD Static polymorphism in descendants [BM99] 

DPD Dynamic polymorphism in descendants [BM99] 

SP Static polymorphism in inheritance relations. SP = SPA + SPD [BM99] 

DP Dynamic polymorphism in inheritance relations. DP = DPA + DPD [BM99] 

NIP Polymorphism in non-inheritance relations. [BM99] 

OVO Overloading in stand-alone classes [BM99] 

CHNL Class Hierarchy Nesting Level (likely identical with DIT) [BS98] 

CACI class attribute complexity/size, inherited [NQ98] 

CI class method complexity/size, inherited [NQ98] 

CMICI class method interface complexity/size, inherited [NQ98] 

 



 41

 

Some of the size measures in Table 14 are frequently used in publications and available tools, and no definite 
source or author can be given for them. 

Table 14: Size measures 

Name Definition Source 

NMImp The number of methods implemented in a class (non-inherited or overriding methods)  

NMInh The number of inherited methods in a class, not overridden  

NM  The number of all methods (inherited, overriding, and non-inherited) methods of a class. 

NM = NMImp + NMInh  

 

NAImp, 

Totattrib 

The number of attributes in a class (excluding inherited ones). Includes attributes of basic types such as 

strings, integers. 

 

NAInh The number of inherited attributes in a class  

NumPar  Number of parameters. The sum of the number of parameters of the methods implemented in a class.  

Stmts The number of declaration and executable statements in the method of a class.  

NMpub  The number of public methods implemented in a class.  

NMN pub The number of non-public (i.e., protected or private) methods implemented in a class.  

Attrib  count of attributes per class from the information model [CS00] 

States  count of states per class from the information model [CS00] 

EVNT  count of events per class from the information model [CS00] 

READS  Count of all read accesses by a class (contained in a case tool) [CS00] 

WRITES Count of all write accesses by a class (contained in a case tool) [CS00] 

DELS Count of all delete accesses by a class contained tin the case tool [CS00] 

RWD  Count of synchronous accesses per class from the case tool [CS00] 

LOC Lines of code [CS00] 

LOC_B  C++ body file lines of code per class [CS00] 

LOC_H  C++ header files lines of code per class [CS00] 

NOMA Number of Object/Memory Allocation: Number of statements that allocate new objects or memory in a class [TKC99] 

AMC- 

TKC99 

Average Method Complexity: Average method size for each class [TKC99] 

CACL class attribute complexity/size, local [NQ98] 

CL class method complexity/size, local [NQ98] 

CMICL class method interface complexity/size, local [NQ98] 

 



 42

 

7 Glossary 

This glossary provides a list of all abbreviations used throughout the paper. This excludes acronyms used as 
names of design measures, which are listed in the Appendix above. 

ARE absolute relative error, see Section 3.4.5 

AROC area under receiver-operator curve, Section 3.4.5 

C&K The measures defined by Chidamber and Kemerer [CK91, CK94] 

CART Classification and Regression Trees 

CCI Coupling, cohesion, inheritance Measures, i.e., measures of OO design properties, as 
opposed to (usually simple) size measures 

C-FOOD Coupling measures for Object-Oriented Designs - the measures defined in [BDM97] 

CV cross validation, see Section 3.5.1 

DV dependent variable 

IV independent variable 

LL log likelihood 

LR logistic regression 

LS least-squares regression 

MARS Multivariate Adaptive Regression Splines 

ML maximum likelihood 

MOOD Metrics for Object-Oriented Designs - the measures introduced in [AGE95] 

MRE magnitude of relative error, Section 3.4.5 

OLS ordinary least-squares regression 

OO object-oriented 

PC Principal component 

PCA Principal component analysis, Section 3.2 

ROC receiver operator curve, Section 3.4.5 

 



 43

 

8 References 

[AGE95] F. Abreu, M. Goulão, R. Esteves, “Toward the Design Quality Evaluation of Object-Oriented Software Systems”, 5th 

International Conference on Software Quality, Austin, Texas, USA, October 1995 

[AM96] F. Abreu, W. Melo, “Evaluating the Impact of Object-Oriented Design on Software Quality”, Proceedings of Metrics 1996. 

[Bar98] Barnard, J., “A new reusability metrics for object-oriented measures”, Software Quality Journal 7, 35-50, 1998. 

[BBDD97] L. Briand, C. Bunse, J. Daly, C. Differding, “An Experimental Comparison of the Maintainability of Object-Oriented and 

Structured Design Documents”, Empirical Software Engineering 2 (3), 291-312, 1997.  

[BBD97] L. Briand, C. Bunse, J. Daly, “An Experimental Evaluation of Quality Guidelines on the Maintainability of Object-Oriented 

Design Documents”, IEEE Transactions on Software Engineering 27(6), 513-530, 2001. 

[BBM96] V.R. Basili, L.C. Briand, W.L. Melo, “A Validation of Object-Oriented Design Metrics as Quality Indicators”, IEEE 

Transactions on Software Engineering, 22 (10), 751-761, 1996. 

[BDM97] L. Briand, P. Devanbu, W. Melo, “An Investigation into Coupling Measures for C++”, Proceedings of ICSE ‘97, Boston, 

USA, 1997. 

[BDW98] L. Briand, J. Daly, J. Wüst, “A Unified Framework for Cohesion Measurement in Object-Oriented Systems”, Empirical 

Software Engineering Journal, 3 (1), 65-117, 1998. 

[BDW99] L. Briand, J. Daly, J. Wüst, “A Unified Framework for Coupling Measurement in Object-Oriented Systems”, IEEE 

Transactions on Software Engineering 25(1), 91-121, 1999. 

[BEDL99] Bansiya, J., Etzkorn, L., Davis, C., Li, W., “A Class Cohesion Metric For Object-Oriented Designs”, JOOP, Jan 1999, 47-52 

[BEGR00] Benlarbi, S., El Emam, K., Goel, N., Rai, S., “Thresholds for Object-Oriented Measures”, Proceedings of ISSRE2000, 24-

37. 

[BFOS84] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. Classification and Regression Trees. Wadsworth & Books/Cole 

Advanced Books & Software (1984).  

[BK95] J.M. Bieman, B.-K. Kang, “Cohesion and Reuse in an Object-Oriented System”, in Proc. ACM Symp. Software Reusability 

(SSR’94), 259-262, 1995. 

[BKW80] D. Belsley, E. Kuh, R. Welsch, “Regression Diagnostics: Identifying Influential Data and Sources of Collinearity.” John 

Wiley & Sons, 1980. 

[BM99] Benlarbi, S., Melo, W., “Polymorphism Measures for Early Risk Prediction”, Proceedings of the Proceedings of the 21st 

International Conference on Software Engineering, ICSE 99, (Los Angeles, USA 1999) 335- 344. 

[BMB96] L. Briand, S. Morasca, V. Basili, “Property-Based Software Engineering Measurement”, IEEE Transactions of Software 

Engineering, 22 (1), 68- 86, 1996. 

[BMW01] L. Briand, W. Melo, J. Wüst, “Assessing the Applicability of Fault-Proneness Models Across Object-Oriented Software 

Projects”, to appear in IEEE Transactions on Software Engineering.  

[BP95] V. Barnett, T. Price, “Outliers in Statistical Data”, 3rd Ed, John Wiley & Sons, 1995. 

[BS96] Binkley, A., Schach, R., “Impediments to the Effective Use of Metrics within the Object-Oriented Paradigm”, TR, Univ. 

Vanderbilt 

[BS98] Binkley, A., Schach, R., “Validation of the Coupling Dependency Metric as a Predictor of Run-Time Failures and 

Maintenance Measures”, Proc. ICSE98, 452-455 



 44

[BWL99] L. Briand, J. Wüst, H. Lounis, “Using Coupling Measurement for Impact Analysis in Object-Oriented Systems“, Proceedings 

of ICSM’99, 475- 482, 1999.; 

[BW01] L. Briand, J. Wüst, “The Impact of Design Properties on Development Cost in Object-Oriented Systems”, to appear in IEEE 

Transactions on Software Engineering. 

[BW01b] L. Briand, J. Wüst , “Integrating scenario-based and measurement-based software product assessment”, Journal of 

Systems and Software 59(1), p. 3-22, December 2001. 

[BWDP00] L. Briand, J. Daly, V. Porter, J. Wüst, “Exploring the relationships between design measures and software quality in object-

oriented systems”, Journal of Systems and Software 51, p. 245-273, 2000.  

[BWL99] L. Briand, J. Wüst, H. Lounis, “Using Coupling Measurement for Impact Analysis in Object-Oriented System”, IEEE 

International Conference on Software Maintenance (ICSM), 1999, Oxford, UK.  

[BWL01] L. Briand, J. Wüst, H. Lounis, “Replicated Case Studies for Investigating Quality Factors in Object-Oriented Designs, 

Empirical Software Engineering: An International Journal, Vol 6, No 1, 11-58, 2001. 

[CDK98]  S. Chidamber, D. Darcy, C. Kemerer, “Managerial use of Metrics for Object-Oriented Software: An Exploratory Analysis”, 

IEEE Transactions on Software Engineering, 24 (8), 629-639, 1998. 

[CK91] S.R. Chidamber, C.F. Kemerer, “Towards a Metrics Suite for Object Oriented design”, in A. Paepcke, (ed.) Proc. 

Conference on Object-Oriented Programming: Systems, Languages and Applications (OOPSLA’91), October 1991. 

Published in SIGPLAN Notices, 26 (11), 197-211, 1991. 

[CK94]  S.R. Chidamber, C.F. Kemerer, “A Metrics Suite for Object Oriented Design”, IEEE Transactions on Software Engineering, 

20 (6), 476-493, 1994. 

[CL93] J-Y. Chen, J-F Lu, “A New Metric for Object-Oriented Design”, Information and Technology Vol 35, No 5, 232-240. 

[CS00] M. Cartwright, M. Shepperd, “An Empirical Investigation of an Object- Oriented Software System”, IEEE TSE 2000 

[CN00] S. Counsell, P. Newson, “Use of friends in C++ Software: an empirical investigation”, Journal of Systems and Software 53, 

15-21, 2000. 

[Dun89] Dunteman, G., 1989. Principal Component Analysis. Sage University Paper 07-69, Thousand Oaks, CA. 

[EBD99] L. Etzkorn, J. Bansiya, C. Davis, “Design and Code Complexity Metrics for OO Classes”, JOOP March/April 1999, 35-40 

[EDW98] Etzkorn, L., Davis, C., Li, W., “A Practical Look at the Lack of Cohesion in Methods Metric”, JOOP September 1998, 27-34. 

[EBGR01] El Emam, K., Benlarbi, S., Goel N., Rai, S., “The Confounding Effect of Class Size on The Validity of Object-Oriented 

Metrics”, IEEE Transactions on Software Engineering Vol 27. No 7, 630-650, 2001. 

[EBML00] El Emam, K., Benlarbi, S., Melo, W., Lounis, H., Rai, S., “The Optimal Class Size for Object-Oriented Software: A 

Replicated Case Study”, Technical Report ERB-1074, NRC, 2000. Available at www.object-oriented.org 

[EBGR99] El Emam, K., Benlarbi, S., Goel, N., Rai, S., “A Validation of Object-Oriented Metrics”, Technical Report ERB-1063, NRC, 

1999. Available at www.object-oriented.org 

[EKS94] J. Eder, G. Kappel, M. Schrefl, “Coupling and Cohesion in Object-Oriented Systems”, Technical Report, University of 

Klagenfurt, 1994. 

[EMM01] El Emam, K., Melo, W., Machado, J., “The Prediction of Faulty Classes Using Object-Oriented Design Metrics”, Journal of 

Systems and Software 56, 63-75, 2001.  

[Eve93] Everitt, “Cluster Analysis”, Edward Arnold, 1993. 

[Fri91] J. Friedman, “Multivariate Adaptive Regression Splines”, The Annals of Statistics, Vol. 19, 1-141, 1991 



 45

[GEMM00] Glasberg, D., El Emam, K., Melo, W., Madhavji, N., “Validating Object- Oriented Design Metrics on a commercial Java 

application”, TR ERB- 1080, NRC, Sep. 2000.  

[GS74] Green, D., Swets, J., “Signal Detection Theory and Psychophysics”, rev. ed. Huntington, NY: Krieger, 1974. 

[Hal77] Halstead, H.M., “Elements of Software Science”, Elsevier North Holland, 1977. 

[Hay94] Hayes W. Statistics. Fifth Edition, Hartcourt Brace College Publishers (1994). 

[HC98] Harrison, R., Counsell, S., “The role of inheritance in the maintainability of object-oriented systems”, Proceedings of 

ESCOM ‘98, p. 449-457, 1998. 

[HCN00] Harrison, R., Counsell, S., Nithi, R., “Experimental assessment of the effect of inheritance on the maintainability of object-

oriented systems”, Journal of Systems and Software 52, 173-179, 2000. 

[HCN98] Harrison, R., Counsell, S., Nithi, R., “Coupling Metrics for Object-Oriented Design”, Proceedings of the 5th International 

Software Metrics Symposium, Bethesda, MD, 150-157, 1998. 

[Hen96] B. Henderson-Sellers, “Software Metrics”, Prentice Hall, Hemel Hempstaed, U.K., 1996. 

[HL89] D.W. Hosmer, S. Lemeshow, “Applied Logistic Regression”, John Wiley & Sons, 1989. 

[HM95] M. Hitz, B. Montazeri, “Measuring Coupling and Cohesion in Object-Oriented Systems”, in Proc. Int. Symposium on Applied 

Corporate Computing, Monterrey, Mexico, October 1995.  

[HN96] R. Harrison, R. Nithi, TR, “An Empirical Evaluation of Object-Oriented Design Metrics”, TR, 1996 

[HSDL96] R. Harrison, L.G. Samaraweera, M.R. Dobie, P.H. Lewis, “An evaluation of Code Metrics for Object-Oriented Programs”, 

TR, 1996 

[MHM99] Moser, Henderson-Sellers, Misic, “Cost Estimation Based on Business Models”, JSS 49, 1999, 33-42 

[MT98] Misic, V., Tesic, D., “Estimation of effort and complexity: An object-oriented case study”, JSS 41, 1998, 133-143 

[ISO14598] ISO/IEC DIS 14598-1, “Information Technology – Product Evaluation”, Part 1: General Overview. 

[KPF95] B. Kitchenham, S. Pfleeger, N. Fenton, “Towards a framework for software measurement validation: A measurement theory 

perspective”, IEEE Transactions on Software Engineering 12, 929-944. 1995. 

[LC92] A. Lake, C. Cook, “A Software complexity metric for C++”, Technical Report 92-60-03, Department of Computer Science, 

Oregon State University, 1992.” 

[LC94] A. Lake, C. Cook, “Use of factor analysis to develop OOP software complexity metrics”, Proc. 6th Annual Oregon 

Workshop on Software Metrics, Silver Falls, Oregon, 1994. 

[LH93] W. Li, S. Henry, “Object-Oriented Metrics that Predict Maintainability”, J. Systems and Software, 23 (2), 111-122, 1993. 

[LHKS95] Li, W. Henry, S., Kafura, D., Schulman, R., “Measuring Object-Oriented Design”, JOOP Vol 8, No 4, July/August 1995, 48-

55 

[Li98] W. Li, “Another metric suite for object-oriented programming”, Journal of Systems and Software 44 (1998), 155-162, 1998. 

[LK94] M. Lorenz, J. Kidd, “Object-Oriented Software Metrics”, Prentice Hall Object-Oriented Series, Englewood Cliffs, N.J., 1994. 

[LLWW95] Y.-S. Lee, B.-S. Liang, S.-F. Wu, F.-J. Wang, “Measuring the Coupling and Cohesion of an Object-Oriented Program 

Based on Information Flow”, in Proc. International Conference on Software Quality, Maribor, Slovenia, 1995. 

[Lon97] S. Long, “Regression Models for Categorical and Limited Dependent Variables”, Advanced Quantitative Techniques in the 

Social Sciences Series, Sage Publications, 1997. 

[Lew80] M. Lewis-Beck, “Applied Regression: An Introduction”, Sage publications, 1980 



 46

[McC76] McCabe, T.J., A complexity measures, IEEE Transactions on Software Engineering 16 (5), 510-522, 1976. 

[MB91] Meyer, M., Booker, J., “Eliciting and Analyzing Expert Judgement. A Practical Guide”, London: Academic Press, 1991. 

[MC96] J. Mayrand, F. Coallier, “System Acquisition Based on Software Product Assessment”, Proceedings of ICSE’96, Berlin, 

Germany, 210-219,1996. 

[Mil81] Miller, R. Jr., “Simultaneous Statistical Inference”, 2nd. ed., Springer Verlag, 1981. 

[NQ98] P. Nesi, T. Querci, “Effort estimation and prediction of object-oriented systems”, Journal of Systems and Software 42, p. 

89-102, 1998. 

[Pre81] Pregibon, D., “Logistic Regression Diagnostics”, Annals of Statistics 9, 705-724, 1981. 

[RL92] Rajaraman, Lyu, “Reliability and Maintainability Related Software Coupling Metrics in C++ Programs”, Proceedings of 

ISSRE 1992. 

[Ros97] Rosenberg, J., “Some Misconceptions About Lines of Code”, Proceedings of the 4th International Software Metrics 

Symposium (Metrics ‘97), 137-142, 1997. 

[SC93] Sharble, R., Cohen, S., “The Object-Oriented Brewery: A Comparison of Two Object-Oriented Development Methods”, 

Software Engineering Notes 18 (2), 60-73, 1993. 

[SC99] D. Steinberg, N. Cardell, “The Hybrid CART-Logit Model in Classification and Data Mining”, Salford Systems, 

http://www.salford-systems.com, 1999. 

[SM88] Shlaer, S., Mellor, S., “Object-Oriented Systems Analysis: Modeling the World in Data”, Yourdon Press, 1988. 

[Spe81] Spector, P. “Research Design”, Newbury Park: Sage Publications, Quantitative Applications in the Social Sciences, 1981.  

[Sto74] M. Stone, “Cross-validatory choice and assessment of statistical predictions”, J. Royal Stat. Soc., Ser. B 36, 111-147, 

1974. 

[TKC99] Tang, Kao, Chen, “An Empirical Study on Object-Oriented Metrics”, Proceedings of Metrics 1999, 242-249 

[TSM95] D.P. Tegarden, S.D. Sheetz, D.E. Monarchi, “A Software Complexity Model of Object-Oriented Systems”, Decision Support 

Systems, 13(3-4), 241-262, 1995. 

[WDMR99] Wood, M., Daly, J., Miller, J., Roper, M., “Multi-method research: An empirical investigation of object-oriented technology”, 

Journal of Systems and Software 48, 13-26, 1999. 

[Whi97] Whitmire, S., “Object-Oriented Design Measurement”, John Wiley & Sons, 1997.  

[WH98] Wilkie, Hylands, “Measuring Complexity in C++ Application Software”, Software Practice and Experience Vol 28 No 5, 

1998, 513-546. 

[WK00] Wilkie, G., Kitchenham, B., “Coupling Measures and Change Ripples in C++ Applications”, JSS 52, 2000, 157-264 

[WWW90] Wirfs-Brock, R., Wilkersion, B., Wiener, L., “Designing Object-Oriented Software”, Prentice Hall, 1990. 

[Zus98] Zuse, H., “A Framework of Software Measurement”, Walter de Gruyter, 1998.  


